
Incremental Evaluation of a
Monotone XPath Fragment

Japan Advanced Institute for Science and Technology

Hidetaka Matsumura, Keishi Tajima

Introduction

Why incremental evaluation?
• incremental maintenance of materialized views
• continuous queries, subscription queries

Monotone XPath:
• deletion from DB deletion from query ans
• insertion to DB insertion to query ans

Basic Idea

We store information on:

By using this information:
upon deletion of elements:
• we identify the answers to which the deleted element

was contributing
upon insertion of elements:
• we can skip a part of computation of elements that

newly become answers

which elements were contributing
to which query answers

Properties of Contributing Elements

Those matching steps outside predicates:
• when they are deleted, the corresponding

answer elements are also deleted
no need to monitor them

Those matching steps within predicates:
• there may be many elements matching the same

step for each answer we need counters
• they indirectly contribute to answers through

the joint step of that predicate

matching information:
(e1, s1, e7)
(e2, s2, e1) (e5, s2, e1)
(e3, s3, e2) (e6, s3, e5)
(e4, s3, e2)

counter:
(e7, Q1, [s1=1, …])
(e1, s1, [s2=2])
(e2, s2, [s3=2])
(e5, s2, [s3=1])

Matching information and Counter

a

bb

cc

Q1: /･･･/a [b [c]] / d

c

d

e1

e3 e4

e5

e6

e7

s1 s2 s3

e2

Processing of Deletions

If e3 has been deleted:
1. search the matching information for e3
2. (e3, s3, e2) was found
3. decrement the counter s3 for e2:

(e2, s2, [s3=1]) (e2, s2, [s3=0])
4. If the counter reaches 0:

e2 no longer matches s2
⇒ search the matching information for e2 ・・・

If it does not reach 0
e2 still matches s2
⇒ stop

If e8 is inserted :
1. identify which steps in

which queries it may match
2. we find it may match the

step “d” of Q1
3. we go upward and examine

ancestor steps one by one
4. we find (e1, s1, e7)

now we know e8
matches Q1 without
evaluating the rest of Q1

Processing of Insertions

so-called bottom-up
evaluation strategy

Q1: /･･･/a [b [c]] / d

a

bb

cc

d

e1
e2

e4

e5

e6

e7
d
e8

Experiments
• Oracle 9i 64bit / Sum Blade 2000 (900MHz UltraSPARC-CU x 2) / 6GB memory

• XMark data (scaling factor 10, no attributes). 16,703k nodes. 846,755k bytes

Q2: / site [people / person / name = ‘Marek Gill’] / categories / category / name
Q3: / site / closed_auctions / closed_auction [* // price = ‘146.02’] / buyer

query # of ans. # of a / c size of a / c (byte)

Q2 10,000 20,000 424,017

Q3 5 17 421

query naive approach (ms) our approach (ms)

Q2 3,845 25

Q3 8,816 20

Size of matching information and counters Processing time for element deletion

(ms) all-at-once our method

counter at 3rd step 3,395 131

match (no counter) 3,395 3,556

fail at 1st step 20 10

fail at 2nd step 20 71

fail at 3rd step 3,345 3,426

fail at 4th step 11,537 11,557

(ms) all-at-once our method

counter at 2nd step 1,862 54

match (no counter) 1,862 2,014

fail at 1st step 10 10

fail at 2nd step 931 34

fail in predicate 1,963 1,976

fail at 4th step 941 1,991

Processing time for element insertion (Q3)Processing time for element insertion (Q2)

	Incremental Evaluation of a Monotone XPath Fragment

