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Background

We may want to change dataflows halfway.
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[1] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “Turkit: human computation algorithms on mechanical turk,” in Proc. of ACM UIST 2010, 2010, pp. 57—66.

Combining Caches Additional Task

Compare the costs of the two plans
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Simulation It IS possible to 1dentify the best point to minimize the total cost

and there 1S no obvious solution.
Simulation settings Simulation Results
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