
Optimal Tree Node Ordering for 
Child/Descendant Navigations

Atsuyuki Morishima, University of Tsukuba

Keishi Tajima,  Kyoto University

Masateru Tadaishi, University of Tsukuba

ICDE 2010



Background 

• There are many applications to deal with  
huge tree data:
– File Directories, XML data,  taxonomies, and some 

of bioinformatics data.

• Set-based navigations are fundamental 
operations for interactively accessing such 
data.



Set-based Navigations
• A user specifies one node and a type of navigation, 

then the system retrieves all the nodes reachable 
from that node via that type of navigation.

• The user browses the retrieved nodes,  selects one 
node,  and repeats set-based navigations from it.

b

a
a a

c
c



Four Basic Navigations

In such an interactive browse-and-traverse style 
of access, users rarely specify complex traverse 
conditions. Therefore, we focus on the following 
most basic tree navigations:

m

l
l l

n
n

→ Xa l
→ Xa *
→Xa

→Xa l*

child

descendant

l-child

l-descendant



Four Basic Navigations

In such an interactive browse-and-traverse style 
of access, users rarely specify complex traverse 
conditions. Therefore, we focus on the following 
most basic tree navigations:

m

l
l l

n
n

→ Xa l
→ Xa *
→Xa

→Xa l*

child

descendant

l-child

l-descendant



In such an interactive browse-and-traverse style 
of access, users rarely specify complex traverse 
conditions. Therefore, we focus on the following 
most basic tree navigations:

m

l
l l

n
n

Four Basic Navigations

→ Xa l
→ Xa *
→Xa

→Xa l*

child

descendant

l-child

l-descendant



In such an interactive browse-and-traverse style 
of access, users rarely specify complex traverse 
conditions. Therefore, we focus on the following 
most basic tree navigations:

m

l
l l

n
n

Four Basic Navigations

→ Xa l
→ Xa *
→Xa

→Xa l*

child

descendant

l-child

l-descendant



In such an interactive browse-and-traverse style 
of access, users rarely specify complex traverse 
conditions. Therefore, we focus on the following 
most basic tree navigations:

m

l
l l

n
n

Four Basic Navigations

→ Xa l
→ Xa *
→Xa

→Xa l*

child

descendant

l-child

l-descendant



The Problem Addressed

• When the data is huge  and stored on the disk,  
how to store the nodes to achieve efficient 
evaluation of the navigations is not trivial.

• One approach is to store the nodes in an 
appropriate order so that the nodes 
accessed together by these operations are 
clustered, but how?



What’s the Problem?

There is no trivial ordering for set-based 
navigations which is I/O optimal

Ex) Depth-first Order



Contributions of Our Work

• Show that  there is no single ordering  scheme 
that is optimal for all the four operations.

• Show  three ordering schemes, each of which 
is optimal only for a subset of them.

• Found that one of the schemes can process all 
the four operations with disk access to a 
constant-bounded number of regions on the 
disks, without accessing irrelevant nodes



Outline

1. Overview and  background

2. The first order: 

3. The second order:

4. The third order:

5. Properties and Discussions

6. Summary

t<
l
t<

*l
t<



:  Optimal Ordering for            and          

Intuitively,  
1. Group siblings who has the same parent, 

2. Sort the groups in the depth first order in t,  and

3. Sort the siblings  within each group  in the sibling 
order

t< → Xa *→Xa



Conflicts caused by   

Conflict with Conflict  with 

• This proves that there is no single ordering which 
is optimal for all the four set-based navigations

• We have two choices.

→ Xa *→Xa

→Xa l*



: Optimal Ordering for 
,            , and

Intuitively, 
1. Sort  the children of each node primarily by the 

labels of their incoming edges, and secondly by 
their original sibling order.

2. Sort the nodes in the same way as    

l
t<

t<

→ Xa l
→ Xa *→Xa



: Optimal Ordering for 
and               (1/2)   

• A maximal unilabeled connected subgraph:  A Maximal 
connected subgraph that includes only one kind of edge 
label

• Unilabeled clusters :   subgraphs created from   maximal 
unilabeled connected subgraphs by removing their root 
nodes

*l
t<
→ Xa l →Xa l*



Intuitively,   
1. Sort the unilabeled clusters primarily in the 

depth-first order of their original roots, and 
secondly in the dictionary order of their labels

2. Within each unilabeled cluster, we sort nodes in 
the order of t<

: Optimal Ordering for 
and               (2/2)   

*l
t<
→ Xa l →Xa l*



Theorems

• There are procedures for               and               
with         that  are I/O optimal.

• Similar theorems hold for         and         .

→ Xa l →Xa l*

*l
t<

t<
l
t<

The numbers of disk regions to access

n : the number of nodes, l : the number of edge labels



Related Work
• Indexing schemes and labeling schemes for path queries 

on XML data
Completely different problem because of differences in  the 

number of steps, starting nodes, and support of the closure 
operator for specific edge-labels.

• Storage schemes for trees (Clustering-based, two-
dimensional disk-space architecture, …)

 Efficiently executed by the current disk access interface. No 
modification to the disk access interface

• Many processing schemes of path queries that scan 
nodes in the depth-first order.
 Efficient for the fundamental navigations without additional 

indices



Summary

We showed how we should order nodes of labeled 
trees on the disk for efficient processing of set-
based navigations.

– Showed there is no single ordering  scheme that is 
optimal for all the four operations.

– Showed a couple of  schemes, each of which is 
optimal only for a subset of them.

– Found that one of the schemes can process all the 
four operations with disk access to a constant-
bounded number of regions on the disks, without 
accessing irrelevant nodes



Processing             with                    

Disk image:

Procedure:
1. Scan the node entries starting at firstChild(a,l)
2. Stop the scan when we reach a node n s.t either:

1. Parent(n)≠a and parent(n)<firstChild(a,l), or
2. Label(n) ≠l

Tree:

*l
t<→Xa l*


	Optimal Tree Node Ordering for Child/Descendant Navigations
	Background 
	Set-based Navigations
	Four Basic Navigations
	Four Basic Navigations
	スライド番号 6
	Four Basic Navigations
	スライド番号 8
	The Problem Addressed
	What’s the Problem?
	Contributions of Our Work
	Outline
	 :  Optimal Ordering for            and          
	Conflicts caused by   
	: Optimal Ordering for �    ,            , and
	 : Optimal Ordering for �       and               (1/2)   
	 : Optimal Ordering for �       and               (2/2)   
	Theorems
	Related Work
	Summary
	Processing             with                    

