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Abstract—In this paper, we propose several strategies for
selecting the next item to label in active learning for text data.
Text data have several text-specific features, such as TF-IDF
(term-frequency and inverse document frequency) vectors, and
document embeddings based on the embeddings of the included
words. These features have correlation with the informativeness
of the text data, so they are potentially useful to decide annotation
order in active learning. Our methods select the next item to label
by using these text-specific features. We evaluate the performance
of our strategies in two problem settings: the standard active
learning setting, where we focus on the improvement of the model
accuracy with as small number of annotations as possible, and the
learning-to-enumerate setting, where we focus on the efficiency
in enumerating all instances of a given target class with as small
number of annotations to the non-target instances as possible.
We also combine our strategies with two existing strategies:
uncertainty sampling, a well-known strategy for the standard
active learning, and the exploitation-only strategy, a strategy
used in learning-to-enumerate problems. Our experiment on two
publicly available English text datasets show that our method
outperforms the baseline methods in both problem settings.

Index Terms—active learning, learning to enumerate, infor-
mativeness, TF-IDF, word embedding, uncertainty sampling,
exploitation-exploration

I. INTRODUCTION

Sufficient size of labeled training dataset is crucial for
success in supervised machine learning. However, human
annotation is often cost-prohibitive in terms of time and
money. To accomplish a task with as few human annotations
as possible, it is desirable if we can assign labels only to
items that are most effective as training data. However, we
cannot know which items are effective in advance. To tackle
this problem, many studies have proposed various strategies
for actively (i.e., not passively) deciding the next data items
to label and learn. This approach is called active learning [1].

In active learning, we train a classifier and create a training
dataset incrementally in parallel. We use the current classifier
(initially a random classifier) to decide which item to label
next, the obtained label is added to the training dataset, and
we update the classifier by using the updated dataset. We then
use the updated classifier for selecting the next item. We repeat
these steps in order to train the classifier efficiently with a
minimum annotation effort. We usually assume that the labels
given to the chosen items are always correct, and they are
sometimes called oracles.
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There are several variations of the scenario assumed in
active learning, but we focus on the scenario called pool-based
active learning [1]. In pool-based active learning, we are given
a fixed pool of unlabeled data, and the next data item to label
is chosen from the pool. In this scenario, what we need is a
strategy for selecting the next item from a given set.

There are several criteria that are important for item selec-
tion in active learning. One such criterion is informativeness of
an item and its label. There have been many studies on how to
define and estimate the informativeness in the active learning
context. Most of the proposed methods have been designed for
general applications on arbitrary data types. However, when
we apply active learning techniques to some specific task, the
task usually processes some specific types of data. Therefore,
we may be able to make use of some properties specific to
the data types for estimating the informativeness of items.

Text data is one of the data types that most frequently appear
in machine learning tasks. In this paper, we propose several
strategies for selecting the next item in active learning on
text data. Our strategies use features that are specific to text
data. One of the most important characteristics of text data
is that a text is composed of words. We hypothesize that a
text data including more informative words contributes more
to improving the classifier. We propose methods for estimating
the informativeness of a text data by using the following
word-related text-specific features: unique word count, TF-
IDF (term frequency and inverse document frequency) values
of the included words, and document embeddings based on
the embeddings of the included words.

When we evaluate the proposed methods, we consider two
variations of the problem setting in active learning. The first is
the standard one, in which the goal is to achieve high model
accuracy with as few annotations to data items as possible.
The second is the problem setting called learning-to-enumerate
problem [2], in which the goal is to enumerate all the instances
of a given target class with as few annotations to items that
are not instances of the target class. We explain the difference
between these two problem settings in more detail later.

Informativeness estimated from text-specific features and
other data-type-independent criteria used in the existing stud-
ies focus on completely different aspects of data items. We,
therefore, expect that they may be complementary with each
other. Based on this intuition, we also propose methods that



combine our methods and existing standard methods for active
learning. In particular, we combine our methods with uncer-
tainty sampling [3] for the standard active learning setting,
and we combine our method with the greedy exploitation-only
strategy for the learning-to-enumerate setting.

We conducted experiments with two publicly available
English text datasets, and the results suggest that our methods
have some superiority over the existing methods in the two
problem settings explained above.

The remainder of this paper is organized as follows. Sec-
tion II discusses some related work. Section III explains the
two problem settings in more details. Section IV explains
our proposed method, and Section V shows the result of our
experiments. Section VI concludes the paper.

II. RELATED WORK

In this section, we first explain existing research on the
active learning and some other problems related to the training
order of samples in machine learning. We then briefly survey
the research on active learning for text data. We also explain
related work on the informativeness of words and documents.

A. Training Order of Samples in Machine Learning

In active learning, we repeatedly choose an unlabeled item,
query its label, and feed the result into the classifier for
training. Settles [1] further classified this scenario into three
types of scenarios: pool-based, stream-based, and membership
querying. In pool-based active learning, we choose the next
item from a given pool of unlabeled data. In stream-based
active learning, we are given an item one-by-one, and we need
to decide whether we query its label or not before proceeding
to the next item. In other words, pool-based active learning
is an offline problem, and stream-based active learning is an
online version of the problem. On the other hand, some studies
have assumed that we can generate a sample data and query
its label. This scenario is called membership querying.

In this paper, we focus on pool-based active learning. In
many applications of information retrieval, we are given a fixed
set of data items. In the learning-to-enumerate setting, we are
always given a fixed pool of unlabeled data items. In addition,
we focus on text data in this paper. When we focus on text
data, membership querying scenario is not common because
it is not easy to artificially generate useful sample documents,
and it may also be difficult for human annotators to label such
artificially generated documents appropriately.

The main stream of the research on active learning do not
assume specific data types, and they mainly use information
on the distribution of the data in the data space. Uncertainty
sampling proposed by Lewis and Gale [3] is one such method.
It chooses the item for which the current model has the least
confidence (i.e., an item closest to the decision boundary of
the current model). The intuition behind this is that the correct
label for such an item must be the most informative for the
model, and will best improve the model. On the contrary, an
item for which the current model has the highest confidence
about the class must be the least informative. Their experiment

on a text categorization task showed that uncertain sampling
could achieve reductions of up-to 500-fold in the number of
annotations [3]. Because uncertainty sampling has been proved
to be an effective and also robust method [4], [5], we adopt
it as the standard method in the active learning setting, and
combine our method with it. We use uncertain sampling also as
the baseline method in the evaluation explained in Section V.

A similar method of estimating the informativeness of
items is query-by-committee [6], [7], where we train multiple
classifiers, and choose items on which they disagree.

On the contrary, in relevance feedback [8], which is a well-
known technique in information retrieval, we show to users
items top-ranked by the current ranking model, and ask for
their feedback (i.e., relevance labels) on them. The ranking
model is then updated based on the feedback. In other words,
we query for labels of items that the current model thinks is
the most likely to be of the target class.

It is a reasonable strategy when the annotators are the
querying users themselves who are interested only in reading
documents in the target class. This strategy is also expected
to improve the classifier well if many negative samples are
included in the top-ranked answers by the current model. It
is also reasonable when we assume interactive information
retrieval tasks. In that case, if all the top-ranked answers are
of the target class, we can finish the task, and if there are
negative samples within the top-ranked answers by the current
ranking model, we can improve the model.

In ordinary active learning, however, we repeat the labeling
step many times, and as the training proceeds, negative sam-
ples become very rare in the top-ranked answers. Therefore, if
we only label top-ranked items in the ordinary active learning
scenario, we cannot improve the classifier until we run out of
positive unlabeled samples in the top-ranked answers.

In the learning-to-enumerate setting, the problem explained
above is not an issue because the goal is to extract the
positive instances until we run out of it. The main issue in the
learning-to-enumerate setting is how to balance exploitation
and exploration. In this context, exploitation means that we
choose an item that the current model thinks is the most likely
to be of the target class in order to maximize the probability
that we obtain a positive instance. Exploration means that we
choose an item for which the current model is least confident
in order to explore a new region in the data space.

Jorger et al. [2] discussed the learning-to-enumerate prob-
lem and proposed a simple method based on e-greedy strat-
egy [9]. That is, their method adopts the selection by the
current classifier in the probability 1 — €, and explore items
in new regions in the data space in the probability e. They
experimented on 19 small- and medium-sized public datasets
available at the UCI Machine Learning Repository, and their
results showed that the exploitation-only strategy (i.e., € = 0)
was the best. Based on their result, we combine our meth-
ods with the exploitation-only strategy when we assume the
learning-to-enumerate setting. The exploitation-only strategy
is also used as the baseline when we evaluate our methods in
the learning-to-enumerate setting.



We explained that there is an exploitation—exploration trade-
off in the learning-to-enumerate problem, but standard active
learning also has a trade-off between refining the current
decision boundary and exploring unexplored regions. Osugi et
al. [10] proposed an active-learning algorithm that dynamically
adjust the probability of exploration at each step based on the
effectiveness of the previous exploration. The effectiveness
of the previous exploration is measured by how much it
has changed the model. This kind of methods that balance
exploitation and exploration are orthogonal to methods that ei-
ther implement exploitation strategy or implement exploration
strategy. For example, their method can be combined with
uncertainty sampling: we use uncertainty sampling when their
method has selected exploration, and use some exploitation
strategy when their method has selected exploitation.

Konyushkova and Raphael [11] proposed another approach,
which they called “learning active learning.” Their idea was to
train a regressor that predicts the expected error reduction we
would obtain by learning each candidate sample. The input to
the regressor are the properties of the current classifier and the
candidate sample. They first trained a random-forest classifier
on a synthetic labeled dataset and measured the error reduction
by each sample. They then trained a regressor that predicts the
error reduction based on the properties of the current classifier
and the sample. They showed that it can learn a strategy
that works well on real data from a wide range of domains.
However, we cannot use their method in our problem setting
because their method requires the labeled synthetic data for
training the regressor that predicts the error reduction.

In addition to informativeness, representativeness is an
important criteria in the item selection in active learning [12],
[13]. Items that are representative of the remaining unlabeled
data are more useful for improving the classifier accuracy on
those remaining data. Representativeness is important when
the distribution of the remaining unlabeled data is skewed.
Zhu et al. [14] proposed an active learning strategy that
consider both uncertainty and representativeness of items, and
applied it for active learning on text data. They measure the
representativeness of an item by the density of other items in
its neighbor in the data space.

Bengio et al. [15] proposed the concept of curriculum
learning, which also manages the training order in super-
vised machine learning. They trained a classifier starting
with simpler data (e.g., document with less vocabulary), then
gradually proceeded to more complex ones (e.g., documents
with more vocabulary). Their experiment showed that this
strategy achieved faster convergence and higher final classifier
accuracy. They assume that we use all the training data, and
consider the learning order of them. On the other hand, in
the active learning and the learning-to-enumerate problem, we
consider what to label next in order to avoid labeling all items.

B. Active Learning for Text Data

There have been studies on active learning for tasks related
to text data, such as word sense disambiguation [14], [16] and
word segmentation [17]. For example, Chen et al. [16] ana-

lyzed what features are useful for word sense disambiguation
task in the active learning scenario. However, these studies do
not use text-specific properties for selecting next items.
There have also been many studies that use feature vectors
produced by deep neural networks (DNNs) from text data
for active learning [18]-[21]. For example, An et al. [20]
used feature vectors extracted by Recurrent Neutral Network
(RNN) for active learning on text data. Kholghi et al. [21]
also confirmed that features produced by word embeddings are
useful for active learning on text data. However, these studies
do not use these feature for selecting the next item.
Recently, some studies proposed active learning strategies
for training deep neural networks (DNNs) for text classifica-
tion tasks [22], [23]. However, in active learning, we update
the classifier many times (more than 3,000 times in one of our
experiments explained in Section V). Computation resources
for such a computation is not always available, and some
studies use classifiers with lower complexity [19], [24], [25].
In addition, DNNs require a larger training datasets, and we
often want to achieve a reasonable performance with a smaller
number of annotations. For these reasons, we use linear
support vector machines (linear SVMs) instead of DNNs.

C. Informativeness of Words and Documents

The most classic and well-known measure of the in-
formativeness of words is the inverse document frequency
(IDF) [26], [27]. There have been many proposals of other
measures of the informativeness of words including z-
measure [28], Residual IDF [29], Gain [27], and clarity [30],
but IDF is still regarded as the best measure and the most pop-
ularly used. For example, Rennie and Jaakkola [31] proposed
a new measure, and experimentally compared the performance
of IDF, their measure, and several other measures in their task
of named entity detection. The result shows that their measure
can complement IDF, but IDF still outperforms their measure
when each of them is used alone.

There have also been studies on informativeness of docu-
ments [32], [33], but they focus on the usefulness of a docu-
ment for the readers, not the informativeness for a classifier.

III. TWO PROBLEM SETTINGS

As explained before, we evaluate our proposed methods and
the baseline methods in two problem settings: the standard
active learning setting and the learning-to-enumerate setting.

The learning-to-enumerate setting focuses on how effi-
ciently we can extract all instances of a specific class from
a fixed pool of unlabeled data items. In some applications, we
want to find instances of a specific target class as promptly as
possible while we train a model in parallel.

For example, after a natural disaster, we want to find all
tweets asking for help as promptly as possible. Because we
cannot examine all tweets posted from the affected area, we
want to adopt some machine learning techniques. However,
we cannot prepare a trained classifier in advance because
keywords included in messages asking for help differ from
a disaster to a disaster depending on the disaster type and the



area. Therefore, we need to adopt active learning. We select
tweets that are the most likely to be asking for help, and ask
human workers to examine if they really are. We use the results
not only for deciding where to send the rescue teams, but also
for training a classifier, which is then used to select the next
tweets to examine. Because human examination takes some
time, our goal is to find all tweets asking for help by examining
the smallest number of tweets.

The learning-to-enumerate setting is different from the
standard active learning setting. In the standard active learning,
we choose the item that would best improve the classifier, no
matter what the label (i.e., the result of the oracle or human
examiner) of the item would be. On the other hand, in the
learning-to-enumerate problem, our goal is to minimize the
number of items we manually examine before we find all
the instances of the target class. It is equivalent to minimize
the number of “misses”, that is, the number of items that are
examined and turned out not to be the target class. It means
that labeling an item in the target class is not regarded as a
cost. Therefore, items that are more likely to be of the target
class are preferred when we select the next item to label.

One of the standard approach in the standard active learning
problem setting is uncertainty sampling [3], as explained in
Section II. In uncertainty sampling, we choose an item for
which the current model of the classifier is most uncertain.

On the other hand, in the learning-to-enumerate setting,
we may choose and label an item which the current model
thinks is the most likely to be of the target class, because
labeling an item of the target class is not the cost. There is,
of course, a trade-off between exploitation and exploration. If
we only choose such items, the model will not be improved,
and we cannot obtain a model as good as a model we could
have obtained if we adopted uncertainty sampling. However,
according to [2], the exploitation-only strategy is the best
for learning-to-enumerate problems in most cases in their
extensive experiments, as explained in Section II. In other
words, when we select the next item to label in the learning-to-
enumerate problem, we should choose an item that the current
model thinks is the most likely to be of the target class.

In this way, the standard problem setting of active learning
and that of the learning-to-enumerate problem have different
solutions. In the standard active learning, we should choose
an item that is most informative to the classifier, and in
the learning-to-enumerate problem, we should consider the
balance of the exploitation and exploration. In this paper, we
evaluate our proposed methods in the both problem settings.

Although the learning-to-enumerate setting frequently ap-
pears in many applications, it has not been studied sufficiently.
To emphasize that this setting is not uncommon, we show one
more example. Suppose we are given a news archive, and want
to retrieve all the articles published between 1918 and 1920,
and related to Spanish flu. We may not have a classifier or a
training dataset for such a topic in advance because it was not
a important topic until we had COVID-19. If we have neither
a classifier nor a training dataset, it is another example of the
text retrieval task in the learning-to-enumerate setting.

IV. PROPOSED METHOD

We first propose several primitive methods that select the
most informative document based on some text-specific fea-
tures. We then explain our combined methods that combine
one of the primitive methods and either uncertainty sampling
or the exploitation-only strategy.

A. Primitive Methods

Unique Word Count. The first method sort the documents
by unique word count, i.e., the number of words in a document
without counting multiple occurrences of the same word.
The intuition behind this method is that documents having
more unique words must be more informative for training a
classifier. In our problem setting, we assume that the cost
for labeling one document is constant no matter how long
the document is and how many words it includes. Therefore,
if we label a document including more words, we pay a
constant cost and obtain more information on which words
are positive/negative supports of the target class.

Sum of TF-IDF. Our first method uses unique word count.
However, multiple occurrences of some words may also be
informative for the classifier. If some words appears many
times in a document, we can expect that the document has
a very specific topic, and such a document must be more
informative for the classifier than a document that has no
prominent word. This argument, of course, does not hold for
very common words that appear many times in all or many
documents. Based on these observations, our second method
computes the score of a document by summing the TF-IDF
values of the words in it.

However, in our experiment, we found out that the score
calculated by this method is too much affected by very unusual
words (that is, very large IDF values) that happen to appear
in a document only once. In a extreme case, if a very unusual
word appears only in that document and does not appear in
any other documents in the given pool, information on that
word is not useful for the classifier. This is the issue related
to the representativeness explained in Section II. To avoid this
problem, we only use words having top-k TF-IDF scores in
the document. When a document includes many rare words
that appear in the document only once, the sum of their TF-
IDF values can largely affect the score, but such words are
excluded when we select words with top-k£ TF-IDF values
because a document usually has more than k£ words with large
enough TF values. In other words, we only use such ordinary
words and exclude unusual words.

Sum of TF-IDF of Unseen Words. Even if a word is
informative, if the classifier has already learned that word,
it is no longer useful for improving the classifier. Following
this observation, the third method only select words that have
not appeared in the already-labeled data and sums-up their TF-
IDF values. This method tries to select documents that include
many unseen informative words that have never appeared in
the documents we have already labeled.

Norm of Embedding Vector. Word embedding, which
transforms a word into a vector, has recently been proven



very useful. Word2vec [34] is one of the classic methods for
word embedding. Schakel et al. [35] discussed the relationship
between the norm of a Word2vec vector and the significance of
the word. According to their experiment, the norm becomes
larger when the frequency of the word increases to a given
point. If the frequency further grows, it means that the word
can appear in various contexts, and the norm becomes smaller.
Their finding suggests that the norm of embedding vectors is
useful for estimating informativeness of words. Doc2vec [36]
is a methods for transforming a whole document into a vector
based on the same concept as Word2vec. Our fourth method
transforms documents into vectors by using Doc2vec and sort
documents by the norm of the obtained vectors.

There have been proposals of other more successful word
embedding techniques, such as BERT [37] and RoBERTa [38].
In this paper, however, we adopted Doc2vec because it has
been confirmed by [35] that the Word2vec vectors have the
properties explained above, and Doc2vec is expected to share
the same property.

B. Combined Methods

We also consider combinations of our primitive methods
and uncertainty sampling or the exploitation-only strategy.
In the standard active learning setting, we use uncertainty
sampling, and in the learning-to-enumerate setting, we use the
exploitation-only strategy. We first select the top-/ items by
using uncertainty sampling or the exploitation-only strategy,
then we select one of them by using one of our primitive
methods. The intuition behind this design is as follows.

Uncertainty sampling has been proven to work very well,
but it sometimes fail, and one of the reasons of the failures is
that uncertainty sampling sometimes selects unusual outliers
without meaningful contents. To avoid that, our combination
methods select an item that seems most meaningful among the
top-! items chosen by uncertainty sampling.

In the learning-to-enumerate setting, our combined methods
first select top-/ candidates which the current model thinks are
the most likely to be of the target class. In most cases, all of
these items are truly the positive instances. Therefore, we can
quite safely choose any of them. If so, we should choose the
most informative one among them.

V. EXPERIMENTS

In our experiment, we start from the situation where one
positive and one negative samples are given. If there are no
such samples in the actual application, we randomly select
items from the pool until we find them. Below are the values
we used for parameters in our methods.

o When selecting top-k words having the highest TF-IDF

values in our method, we selected 20 words, i.e., kK = 20.

e In the combination methods, we first choose top 10

candidates, i.e., { = 10.

For the machine-learning model, we selected a linear sup-
port vector machine (SVM) with all default hyper-parameters
from the SciKit-Learn library [39], and we used the balanced
class weight for training, because the datasets were initially
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unbalanced. We also tested random forest classifier, but it
performed poorly. We did not use DNNs because of their huge
computation cost as explained in Section II.

A. Datasets

We used two datasets: Dataset 1 and Dataset 2. Dataset 1
is the Short-Message Service (SMS) Spam Collection Dataset
available at UCI Machine Learning Repository [40]. It is a set
of SMS messages labeled as “spam” or “ham.” In the learning-
to-enumerate setting, we need to specify a target class. For this
dataset, we define spam as the target class. Dataset 2 is the
Large Movie Review Dataset v1.0 [41]. This is a dataset for
binary sentiment classification of movie reviews. For this one,
we define positive reviews as the target class in the learning-
to-enumerate setting.

To investigate the effect of data balance, we manually
changed the target data ratio in the two datasets. In this paper,
we report the results where the target data ratio in Dataset 1
and in Dataset2 was set to 50% and 20%, respectively.

B. Results for Dataset 1

We measured F1 score at each step of the annotation
process, that is, after labeling each item and re-train the
classifier. In the following, we plot the results in graphs where
x-axes represent the number of labeled data. All curves are
smoothed by a moving average with window size of 10 so
that the figures can be read more clearly.

Figure 1 shows F1 score of the proposed methods and two
baseline methods, uncertain sampling and random sampling,



1.0

0.8

0.6

F1

0.4

0.2
----- Random Sampling

Uncertainty Sampling
—— Candidates Word Count
—-+ Candidates Tf-idf Sum
0.0 == Candidates Doc2Vec Norm

0 200 400 600 800 1000 1200

Steps (Number of Labeled Items)

Fig. 3. F1 score of combined methods in Active Learning on Dataset 1

1,0 MEENEE Random Sampling
Enumerate
== Tf-idf Candidates
—— Count Candidates
Doc2Vec Candidates

P

0.8

0.6

0.4

Positive Coverage

0.2

0.0
0 200 400 600 800 1000 1200
Steps (Number of Labeled Items)

Fig. 4. Recall in Learning-to-Enumerate Setting on Dataset 1

on Dataset 1. In the very beginning, our TF-IDF method and
our unseen TF-IDF method are the best, but soon their F1
scores stop to increase. After that, random sampling becomes
the best, and then our word count method, uncertainty sam-
pling, our Doc2Vec method, and uncertainty sampling again,
become the best. Finally our unseen TF-IDF method becomes
the best method and keep it for many steps.

The goal of the active learning in the standard setting is
to promptly achieve the performance we would finally obtain
when we train the classifier with a sufficiently large dataset.
In that sense, our unseen TF-IDF method is the best in this
experiment, but the second best is uncertainty sampling, and
the margin is very small. In addition, if we compare the area
under the curve (AUC) in this graph, uncertainty sampling
is the best, although high AUC is not the goal of the active
learning as explained above.

To analyze more details of the result, we also show the
graphs for precision and recall in Figure 2. As shown in these
graphs, our methods tend to have lower precision and higher
recall than uncertainty sampling. This is because items that
are given higher scores by our methods are more likely to be
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of the target class, i.e., spams, in this dataset. As a result, the
items chosen and labeled earlier are biased toward to spams,
and the classifier trained by those items is also biased toward
the spam class. However, because this dataset is balanced, i.e.,
including 50% spam and 50% ham, this bias is not the reason
of the superiority or inferiority of the proposed methods.

We also evaluate our methods combined with uncertainty
sampling, i.e., the methods that first select top-10 items by un-
certainty sampling, and select one item from those candidates
by using one of our methods. Figure 3 shows F1 score of the
methods. As shown in this graph, the methods that combine
our methods and uncertainty sampling showed slightly but
consistently better performance than did simple uncertainty
sampling. The difference between our methods are very small.

Next, we evaluate our methods in the learning-to-enumerate
setting. In the learning-to-enumerate setting, the goal is to find
instances of the target class as promptly as possible. Therefore,
we evaluate the methods by recall, i.e., the ratio of the labeled
and found positive instances to all the target instances in the
pool. To distinguish it from recall in the experiments in the
standard active learning setting, we call it positive coverage.

In this setting, our primitive methods not combined with
the exploitation-only strategy did not perform well, so we
omit their result. Figure 4 shows positive coverage of the
exploitation-only strategy (denoted by Enumerate in the graph)
and also positive coverage of our methods combined with it.
The combined methods showed slightly but consistently better
performance than did exploitation-only method. Differences
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among the proposed methods were very small.

However, only from this result, we cannot know if our
method is really superior. In this dataset, the positive instances
tend to be given higher scores by our method as explained
before, and it can be the reason of this result. If it is the reason,
our method would be outperformed by the exploitation-only
strategy when the target class is the opposite, i.e., “hams”. For
Dataset 2, we will have such an opposite case, so we will draw
a conclusion after explaining the result for Dataset 2.

C. Results for Dataset 2

We next show the result of the experiment with Dataset
2. Notice that Dataset 1 comprised 50-50% balanced data,
whereas Dataset 2 was 20-80% unbalanced.

Figure 5 shows F1 scores of our methods, uncertain sam-
pling, and random sampling. For this dataset, our methods
were outperformed by uncertainty sampling at most steps. To
analyze further, we show precision and recall in Figure 6.
What happened here is just the opposite to what happened
for Dataset 1. In this dataset, items that are given higher
scores by our methods are more likely to be of the non-target
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Fig. 9. Recall in Learning-to-Enumerate Setting on Dataset 2

class, i.e., negative reviews. Because of that, item selection by
our methods are biased toward the non-target classes, and the
classifiers trained by them are biased toward non-target classes.
As a result, they have higher precision and lower recall than
uncertainty sampling.

Because our methods are biased toward the non-target class,
and this dataset is 20%-80% dataset including more non-
target instances, if we compare our methods and uncertainty
sampling based on accuracy instead of F1 score, our methods
outperforms uncertainty sampling as shown in Figure 7.

Next, we compare uncertainty sampling and our methods
combined with it. Figure 8 shows their F1 scores. All methods
are close to each other, but our Doc2Vec method outperformed
uncertainty sampling with a narrow but consistent margin.

Finally, we evaluate our methods in the learning-to-
enumerate setting with Dataset 2. Our primitive methods not
combined with the exploitation-only strategy did not perform
well also for Dataset 2, so we omit their result, and only show
the result of our methods combined with the exploitation-
only strategy. Figure 9 shows the positive coverage of the
exploitation-only strategy (denoted by Enumerate) and our
methods combined with it. For Dataset 2, instances of the
non-target classes, i.e., negative reviews, are more likely to be
given higher scores by our method, as explained above. It is
disadvantageous for our method in the learning-to-enumerate
setting. However, despite that disadvantage, the performance
of our methods and the exploitation-only strategy are almost
equal. Therefore, this result and the result for Dataset 1 shown
in Figure 4 suggest that our methods combined with the
exploitation-only strategy have superiority over the simple
exploitation-only strategy.

VI. CONCLUSION

In this research, we focused on active learning for text clas-
sification tasks. We considered two variations of the problem
setting of active learning: the standard active learning setting
and the learning-to-enumerate setting.



Most existing strategies for item selection in active learning
do not assume specific data types, and designed for arbitrary
data types. On the other hand, we proposed several methods
that utilize features specific to text data. Our methods estimates
the informativeness of text data by using unique word counts,
sums of TF-IDF values of all words, sums of TF-IDF values
of unseen words, and the norms of Doc2vec vectors.

We also proposed methods combining these primitive meth-
ods with existing standard methods. For standard active-
learning setting, we combine our methods with uncertain
sampling. For the learning-to-enumerate setting, we combine
our methods with the greedy exploitation-only strategy.

We conducted experiments comparing these proposed and
existing methods on two datasets. In the standard active
learning setting, our primitive methods did not necessarily
outperform uncertainty sampling, but our combined methods
outperformed it with a small but consistent margin.

In the learning-to-enumerate setting, our methods outper-
formed the exploitation-only strategy in the experiment with
Dataset 1, where our methods have an advantage because of
the property of the target class, and our methods showed
performance almost equal to that of the exploitation-only
strategy in the experiment with Dataset 2, where our methods
have disadvantage because of the property of the target class.
These results suggest that our methods have superiority over
the simple exploitation-only strategy.
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