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Background (1/3)

Access to Web Pages

There are three ways to access Web pages:
1. direct access by known URLs,
2. navigation from other pages, and

3. content-based access via search engines.

Each page 1s indexed based on the words appearing 1n it.




1. retrieving an already-known page out of huge Web data.

e We use keywords that we saw in that page.

Background (2/3)

Two Types of Queries

The querying unit may be a page.

2. looking for unknown documents concerned with a topic of one’s
current interest.

e We use keywords that are likely to appear in documents

concerned with that topic.

The querying unit is a document




Background (3/3)

Pages v.s. Documents

e Pages — physical data units designed for presentation.

e Documents — logical data units consisting of independent
self-contained set of information.

One complete document in Web 1s
often composed of multiple pages.




Problem

Data Unit in Web Query

A Data unit in ordinary search engines 1s not a documents but a
page. For this discrepancy,

conjunctive queries
with multiple keywords
may fail to retrieve an
appropriate document.

Web

retrieva

document 2
query = {Web, retrieval }




Goal of This Research

The main goal of this research is:

to develop a framework for querying
logical documents in Web data.




Related Work (1/4)

Classification (1): Static v.s. Dynamic

Static Approach:

statically divides the Web graph into subgraphs
corresponding to logical data units 1in advance.

e the most straightforward consequence of our observation of the
problem.

e we can employ complex computation for data unit discovery
without the response latency at query execution.




Related Work (2/4)

Classification (1): Static v.s. Dynamic

Dynamic Approach:

dynamically determines the data units
when a query is given

e The units may vary depending on the given query.

e By combining with some ranking method, it can always return “‘the

best n”” candidates [L198].




Related Work (3/4)

Classification (2): Information Used for Data Unit Detection

e page contents

— text
— tagging pattern

e graph structure

e directory structure in URL




Related Work (4/4)

e Static / Term Frequency [Mizuuchi97,Tajima98]

repeatedly merging neighboring nodes based on the term
frequency similarity

e Static / Link and Directory Structure [Nagafuji98]

repeatedly merging and splitting directories based on the structures

of links between directories.

e Dynamic / Graph Structure

“minimal subgraph approach” [Li198,Hatano99]
(the only dynamic approach published so far)

find minimal subgraphs including all the keywords




Our Approach (1/3)

We take minimal subgraph approach

Though the static approach is a straightforward solution,
e 1t 1s difficult to perfectly detect logical data units, and

e always returning “best n candidates” 1s very useful.




Our Approach (2/3)

Issues in the Minimal Subgraph Approach

1. The cost to dynamically compute minimal subgraphs is high.

We detect links that are clearly not parts of a logical
data unit, and does not traverse them.

2. Not all subgraphs are part of one logical document. Some
ranking method 1s essential to give priority to likely ones.

We designed a ranking methods based on how strongly
the keywords appearing in a subgraph seem related to
each other.




Our Approach (3/3)

Summary of Our Approach

Given query keywords, we approximate logical data units including
all the given keywords by the following steps:

I.
2.

we determine links that may be parts of a logical document,

we find minimal subgraphs connected only by those links and
including all the given keywords, and

. we rank them by our formula.




Step 1: Determining Links to Traverse (1/3)

Typical Structure of Documents in Web

e sequence
via “next” and “previous” links, e.g.:

— html versions of papers or slides.
e hierarchy — pages with hierarchical indexing structure, e.g.:

— many homepages of people or organizations, or
— database pages, such as product catalog pages.

pages corresponding to sections of a document linked




Step 1: Determining Links to Traverse (2/3)

Three Kinds of Links

1. jump links — to pages in other documents by other authors,

2. route links — 1intended by page authors to be “standard routes”
through which the readers go through the document, and

3. back links — going back to some prior pages along the routes.

a document = a subgraph connected by “route links”




Step 1: Determining Links to Traverse (3/3)

Excluding Non-Route Links

We exclude links that point to:

1. pages in ancestor directories,

2. “index. " or the directory name of the same directory
3. pages 1n an incomparable, not sibling directory, or

4. pages on a different Web site

We use very simple analysis because:

N

e we only want to exclude clearly wrong ones, and

e our purpose 1s to reduce the cost




Step 2: Finding Minimal Subgraphs

Our current implementation uses the result of an existing search
engine.

1. first we fetch pages including at least one keyword by submitting

a disjunctive query to the search engine,

2. we fetch the pages in a distance 1 via “route links” from retrieved

pages
3. repeat the step 2 until enough number of answers are found.

For a real system with its own database, we need to elaborate some
algorithm to traverse a graph. See [L198].

N




Step 3: Ranking Method

Cost Function F'(G)
F(G) calculates the “cost” of a subgraph G

F(G) =) vev(K(v)+C)™"

where V: a set of pages in G
K (v): the number of keywords in the page v
C: a constant parameter to adjust F’

A “cost” of a page v is smaller when K (v) is larger.

We rank G with smaller F'(G) higher.




Step 3: Ranking Method

Properties of F'(G)

F@) =n Y sev(K(v) + C)"

where n 1s the number of pages in V.

1. F(G) is proportional to m, i.e. the size of the subgraph.
2. roughly, F'(G) is inversely proportional to the average of K (v)




Step 3: Ranking Method

Properties of F'(G) (cont’d)
3. the larger the variation of K (v) is, the larger F'(G) is.

% S (K@) +C)7t > {% > (K@) +C)}

VEV veV
“=""holds only when Vv, ’vj.K(’Ui) = K(’Uj)-

4. The smaller C'is, the more significant the effect of K (v) is.
When C' = 0, the cost of a page with no keyword is infinite.

5. F(G) does not reflect the shapes of G, which heavily depends
on the authoring style of authors.




Step 3: Ranking Method

G nlavg(K(v))|C =3 C=1C=0

1 3 0.167| 0.250 0.333

2 2 0400 0.677  1.000
2 1.5 0450 0.833| 1.500
(@b—b—bo 3|  1.67 0.650 1.167 2.000
3 1.33 0.700 1333 2.500
@)— —bo 3| 1.33 0.733| 1.677 00
@—br—o) 3 1 0.750 1.500 3.000
301 0783 1833 oo




Step 3: Ranking Method

Summary of Properties of F'(G)

F(G) reflects the distribution of locality of keywords.

e When keywords are distributed to many pages, . becomes large.

e The more the localities of keywords overlap, the larger the average

number of K (v) is.

e When keywords are continuously overlapping in every page, they
are more likely to be one document related to those keywords.




Step 3: Ranking Method

Distribution within Pages

e I'(G) reflects the distribution of keywords across pages.

e We should also examine the distribution within each page.

- Links to My Favorite Pages

o 'rxx’ Home Page — ...k ...

e Pages on 'yyy’ — ...

e Pagesby 'yyy’ — ... ko ...




Appearance Density of Words

Step 3: Ranking Method

e Each word occurrence has its influence around 1it.

e d;(2): appearance density of a word ¢ at a position 2 is the sum of
the influences of the occurrence of £ around z.

e We normalize d¢(2) so that max(d¢(z)) = 1
(4
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Step 3: Ranking Method

Appearance Density of Words

r(t1, t2), the degree of the interrelation of ¢1 and ¢2:

r(t1,t2) = max min(dy, (%), d,(2))

1<i<L

d(i)

tl t2

r(tl, t2) /

> |

For word t in the <t 1t 1e> tag or the main heading:
r(t,t') =1 forallt
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Step 3: Ranking Method

Appearance Density of Words

We redefine F'(G) so that it reflects the interrelation of keywords

within pages:

veV

FG) =Y {A- K@) +B- S r(tit;)+C} !

ti,tjET(’U)

e We will find appropriate values for A, B, C by experiments.




Preliminary Experiments (1/2)

Query 1: {notebook, card, catalog}

“collect all the catalog pages of PC cards for laptop computers”™

n 1 2 3 4 5

# of ans. 980 27 21 0) 0)
# of correct ans.| 682 17 12 0) 0)
precision ratio | 0.696 0.6290.571 — —
(accumulative)  0.696 0.6940.691|0.691 | 0.691
recall ratio! 0.9590.983|1.000|1.000/|1.000

T We assume there is no answer withn > 5




Preliminary Experiments (2/2)

Query 2: {“Ryouichi Sano,” “Kobe University” }

“find the homepage of Ryouichi Sano, who is a student of Kobe
University”
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Discussion (1/3)

When 1s the minimal subgraph approach useful?

e recall-oriented queries, e.g. “collect all pages that...”

e to find some specific page. Some keywords that 1s expected to be
appropriate for the query may happen to appear only in
neighboring pages.




Discussion (2/3)
Semantics of Conjunctive Web Queries

Conjunctions are used with various intentions:

also query — a page discussing t1, and also %s.
t1 and to may not be related to each other.

and query — a page discussing a topic related to €1 and €s.

t1 and t9 are cooperatively describing the topic.

of query — a page discussing 1 of to.

General word t2 and also
specialized word £ anfd
narrow down the topic O
stepwise. Q




Discussion (3/3)
Ranking Method for Each Semantics

e also query

The interrelation between keywords may not be important, and
therefore, K (v) and r(tq, t2) are not appropriate.

e and query

We mainly focus on this. K (v) and (%1, t2) must be important.

e of query

The shape of the graphs and the order of the appearance of the
words may also be useful.




Conclusion

e logical data unit in Web +# page
e minimal subgraph based retrieval for conjunctive queries
e distinction of “route links” and other links

e ranking subgraphs based on the overlap/distribution of query
keywords




