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ABSTRACT

In ordinarysearchenginedor Web pagesthe dataunit
for query processings individual pages. Indexes are
producedfor eachpagein accordancevith the words
appearingn it. In actualWebdata,however, alogical
documentdiscussingone topic is often organizedinto
asetof pagesonnectedia links provided by thepage
authoras“standardnavigationroutes. In sucha situ-
ation, conjunctive querieswith multiple keywordsmay
fail to retrieve an appropriatedocumentif thosekey-
wordsappearin differentpageswithin thatdocument.
Therefore adataunit for Web dataretrieval shouldnot
be a pagebut shouldbe a connectedsubgraphcorre-
spondingo onelogical documentln this paperwe de-
velopnew techniquedor discoveringandretrieving the
logicalinformationunitsin Webdata.As in someprevi-
ousresearchesye adoptminimal subgraprsemantics
for conjunctie queries. In our approachwhengiven
aconjunctive query we try to approximatanformation
unitsincludingall the givenkeywordsin the following
threesteps:(1) we distinguishstandardoutelinks from
the others, (2) we find minimal subgraphsonnected
via thoselinks andincluding all the keywords,and(3)
we computethe scoreof eachsubgraphbasedon the
locality of the keywordswithin it in orderto examine
whetherit is really a logical information unit relevant
to thequery
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1 INTRODUCTION

Web datais a hugehypertet dataconsistingof a huge
numberof Webpagesandlinks connectinghem.Links
areusedin variousways. Somelinks are usedto pro-
vide a way to jump to Web pagesat other (or same)
Websitesdiscussing relatedtopic. Ontheotherhand,
somelinks areprovided by the pageauthorasthe sug-
gestednavigation routesgoing througha set of pages
whichasawholecompos@necompletedocumentFor
example,adocumenis sometime®rganizednto a se-
quenceof pagescorrespondingo its sections. Links
with anchorssaying“next” composingsucha sequence
aretypical examplesof the latter kind of links. Simi-
larly, pagegdescribingvariousinformationon onetopic
aresometime®rganizednto a hierarchy Links going-
down within sucha hierarchyare alsoexamplesof the
latterkind of links. In pagesorganizedin thoseways,
links going backto someprior pagesalongthe routes,
e.g. links to the previous pagewith anchors'back” or
links to the top pagewith anchors‘top,” arealsooften
found.

The userscanretrieve Web dataeither by directly ac-
cessingWeb pagesat known URLS, or by navigating
from pagesto pagesvia thoselinks. Currently how-
ever, anotherimportantway to accesdVeb pagess the
content-base@ccessvia searchengines. Searchen-
ginesprovide facilitiesto list up URLs of pagednclud-
ing given keywords. Whena userwantto newly find
unknownvn pagedliscussingatopic of onesinterest,one
cansubmitaqueryto searchenginedy specifyingkey-
wordsthatarelik ely to appeaiin pageson thattopic.



In ordinarysearclenginedor Webpagesthedataunits
for retrieval is individual pages.As mentionedabove,

however, a completedocumentdiscussingonetopic is

oftenorganizednto asequencer a hierarchyof pages
connectedia “standardroute”links. In thisway, alog-

ical informationunit in Web datais not a pagebut is a
connectedsubgraphcorrespondingo onelogical doc-
ument, and therefore,so shouldthe dataunit in Web
querybe. If we useindividual pagesasthe dataunits
in gquery processinggconjunctive querieswith multiple

keywordswould fail to retrieve someappropriatelocu-
mentwhenthosekeywordshappeno appeaiin differ-

entpagesf thatdocument.

Recentlya couple of researchesncluding ours have
proposedrameworks for queryingthoselogical infor-
mationunitsin Web[22, 23, 26, 16, 13, 9, 8]. Theap-
proachego discover andretrieve suchlogical informa-
tion unitsareclassifiedin severalwaysasfollows.

static approach v.s. dynamic approach

e Staticapproach22, 23, 26, 13, 8] — this approach
statically divides the Web graphinto fixed subgraphs
correspondingo logical documents.Whena queryis
issued]ogical informationunitsincludingall the given
keywordsarereturned.This approacltis a naturalcon-
sequencef our original obsenationthat thereexist in
Webdatalogicalinformationunitsintendedby pageau-
thors. The advantageof this approachis that we can
emplgy complex analysisfor the information unit de-
tection without causingthe responsdateng at query
executionbecausehe analysiscanbe donein adwvance
in thephaseof index creation.

e Dynamicapproach16, 9] — this approachdynam-
ically finds a information unit including all the query
keywordseachtime aqueryis issued.In thisapproach,
partition of the Web graphinto units is variable de-
pendingon the givenquery In the existing researches,
[16] and[9] use minimal subgraphsncluding all the
guerykeywordsasapproximation®f informationunits
matchingto the query Someof such minimal sub-
graphs however, may not actuallybe partof oneinfor-
mationunit butmaybespanningo multipledocuments.
To give priority to subgraphshataremorelikely to be
partof a singledocument[16] usesa queryrelaxation
schemedasedon the size of the graphand[9] uses
a ranking algorithms. The adwantageof dynamicap-
proachis thatit canalwaysreturn“best N results”as
mentionedn [16].
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classification based on the information used for unit discovery

e Pagecontents— this approachanalyzeghe contents
of pagesn orderto detectogicalinformationunits. For
example,in mary researcheshe term frequenciesof
neighboringpages(or subgraphsyre compared,and
similar neighboringpages(or subgraphskare memged
into onelogical informationunit [22, 23, 26]. Onthe
otherhand,[13] usesthe similarity of taggingpatterns
in neighboringpages. Othertechniquedo capturethe
semanticof the documentssuchas naturallanguage
processingechniquesmayalsobe effective.

e Link structure— anotherapproachs to useinforma-
tion on hypertet structure. For example,graphtheo-
retic propertiessuchasvariouskind of connectity [2,
23, 21, 8] or fun-in/fun-out[2, 23, 8] canbeclueto de-
tectingstronglyrelatedpages.In dynamicapproaches
[16, 9], the size of subgraphsare usedin queryrelax-
ationscheme®r in answerranking.

e Directorystructure— anothemsefulinformationthat
we canfind in Webdatais directorystructureembedded
in URL. It usuallyreflectstheintentionof pageauthors,
andis very usefulto guesswhich links areintendedto
be the standardroutes[21], or which setof pagesare
intendedto be composinga singledocumen{23, §].

In this paper we develop new techniquedor discover-
ing andretrieving logicalinformationunitsin Webdata.
In this paper we adoptthe dynamicapproachparticu-
larly theminimal subgraprapproachThereasorof the
choiceis, althoughthe staticapproachis morestraight-
forwardsolutionto the problem“retrieval of logical in-
formationunits; it is quitedifficult to detectsuchunits
perfectly In somecasesgventhe authoroneselfcan-
not tell which pagesare composinga singleindepen-
dentdocument.Thereforeminimal subgraphapproach
is morepractical.

Oneproblemin dynamicapproachs thecostto dynam-
ically traverseWeb graphsto find minimal subgraphs.
If we examinearbitrarysubgraphsthey usuallyinclude
mary subgraphshatareclearlynot partof asinglelog-
ical document. Searchingthosesubgraphss wasting
time. We needsomemethodto eliminatethose“clearly
wrong” casesn someearly phase.The costgrows es-
pecially when the averageof fun-out, the numberof
out-goinglinks from a page,is large. Therefore,re-
ducingthe numberof links to traverseis very effective
to reducethe cost. In this researchwe eliminatelinks
thatarenotintendedby pageauthorsto bethe standard
routes,i.e. not partof a singledocumentpy looking at



directorystructurein URLSs.

In dynamicapproachsomequeryrelaxationschemeor
someranking algorithmis also essentialas explained
above. In this researchye usearankingmethodbased
onthe“locality” of querykeywordsin subgraphsA lo-
cality of aword s theareawheretheword hasits influ-
ence. If localitiesof two wordsgreatly overlap,those
two words must be strongly relatedin that subgraph,
andif they doesnot overlapatall, thosewordsmay be
unrelated.Thereforejf thelocality of querykeywords
in asubgraphgreatlyoverlapswith eachother we rank
thatsubgraphigher We examinethelocality of words
bothacrospagesandwithin eachpage.

In summary whengiven a conjunctve query we find
(approximationsf) informationunitsincludingall the
givenkeywordsin thefollowing threesteps:(1) we dis-
tinguish route links from the otherkind of links, (2)
we find minimal subgraphsonnectedvia thoselinks
andincludingall thekeywords,and(3) we computethe
scoreof eachsubgraptbasednthelocality of the key-
words in orderto examine whetherit is really an in-
formationunit relevantto the query We developtech-
niquesfor eachof thesestepsdiscusgherationality of
thesemantic®f conjunctive queriesfor Web,andshawv
our preliminaryexperimentaresults.

Thereminderof thispapelis organizedasfollows. Next

sectiondiscusanoreaboutrelatedwork. Section3 de-
scribesthe threestepsof the retrieval of logical infor-

mationunits. ThenSection4 discussesariousseman-
ticsof conjunctive querieson Webdata,andtherelation
betweerourmethodandthem.Finally Sections is con-

clusion.

2 RELATER WORK

An early researchon the detectionof meaningfulcon-
nectedsubgraphn hypertet datais [2, 1]. They iden-
tify connectedsubgraphgonsistingof stronglyrelated
nodesbasedon the graphstructurein orderto produce
a summaryor anoverviev mapof the whole structure
of hugehypertet data. On the otherhand,this paper
and[22, 23, 26, 16,9] have proposedo usesuchmean-
ingful subgraphssthe logical dataunit for Web data
retrieval.

[14, 6] alsodevelopeda methodto extract “communi-
ties” of pagesthegroupof pageghatarewrittenby au-
thorshaving the sameinterestandarereferringto each
other by examining the link structure. On the other
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hand,our purposeis to detecta single documentwrit-
tenby oneauthor

Therearealsomary researchesn utilizing both con-
tent information and link information for retrieval or
clusteringof hypertet data[5, 27], for ranking Web
paged12, 19, 4, 3], or for classifyingWeb pagesinto
se/eralpageroles[24]. Althoughthoseapproache-
corporatdink informationin queryingor clusteringhy-
pertet data,they still useindividual nodesasdataunits
for retrieval, ranking,or classification.

Thereis aresearctproposingthe detectionandthe uti-

lization of subtopicstructurein large documentq10].

They divide a long text into smallerfragmentseachof

which corresponds$o eachsubtopic,anduseboththose
fragmentsandthe whole documentasthe dataunitsin

comparisorwith givenqueries.Theconcepbf subtopic
structuresand the conceptof the logical information
unitsin Web datais very similar. [10], however, deals
notwith hypertet but only with sequentiatexts.

Our first researchon the detectionof meaningfulsub-
graphsin hypertet datais [11]. In thatresearchwe
have proposech methodfor identifying connectedsub-
graphsdiscussingone topic in newsgrouparticles or

mailing list archives,which have hypertet structurein-

ducedby “Reference:”or “Reply-to:” headelinforma-
tion. We usedsimilarity betweenneighboringnodes
basednthetermfrequeng. In theworkshopwherewe
presentedhat paper Hiroyuki Kawano of Kyoto Uni-

versitysuggestethatthe sameideacanalsobeapplied
to Web search.Following thatsuggestionywe have de-
velopedaframavork to detectmeaningfulsubgraph

Webdataandto usethosesubgraphsisthelogical data
unitin theretrieval [22, 26].

Theideaof usingminimal subgraphéncludingall key-
wordsis, asfar aswe know, first suggestedby Yoshi-
nori Haraof NEC USA. In an informal meetingwith
us, he suggestedt asanothersolutionto the problem
of conjunctve queriesin Webretrieval. Later, thatidea
waspresentedh [16] by memberof NECUSA, andin
[9] by someof us. In [16], queryresultsare progres-
sively producedn the orderof thesizeof the subgraph,
whichmustalsobetheorderof therelevanceof thesub-
graphsto the query [9] proposeda methodof ranking
subgraph®asedon thelocality of keywordsacrosghe
pagesj.e. how querykeywordsaredistributedto pages
in a subgraph. In that framawvork, subgraphswvhere



multiple querykeywordsappeatogethelin mary pages
is rankedhigherthansubgraphsvherekeywordsappear
disjointly. It is becausehosekeywords seemsmore
stronglyrelatedto eachotherin theformercase.

In this paper we revise the ranking methodproposed
in [9] sothatit reflectsthe size of subgraphsin addi-

tion, we extendtheconcepbf locality. In ournew rank-

ing method,we examinenot only thelocality of words
acrospageshut alsothelocality of wordswithin each
page. If two query keywords appearat positionsfar

from oneanotherin a very long page,thosetwo key-

words may not be relatedat all. It often happenses-
peciallyin “link collection” pages.Thereforewe rank
thesecasedowerthanthosewherethe positionsof key-

wordsarecloseto eachother

In this paper we alsointroducea techniqueto distin-
guishlinks working asbrowsing routeswithin a single
documentindotherkind of links. Thetechniquave use
in this paperis a simplified versionof the techniques
developedin [21]. By this technique we improve the
efficiency and accurag of the automaticinformation
unit detection.[25] alsodiscussedhatall links arenot
equallyusefulandthatwe shoulduselink information
selectvely by distinguishingvariouslink types. In this
paperwe usethe concepbf “routelinks” introducedn
[21] to improve the detectionof logical documentsn
Weh

3 DISCOVERY OF LOGICAL INFORMATION UNITS
In this sectionwe explain eachstepsn thedetectionof
logical informationunits.

3.1 Route Links and Non-route Links

The first thing we do for the detectionof information
unitsin Web datais to distinguishlinks thataremeant
to be the standardbrowsing routesthroughwhich all
readershouldnavigate. We call thoselinks route links.
We distinguishthembecauseve considera setof pages
thatis meantto be onelogical documenis alwayscon-
nectedby thatkind of links.

In this researchwe usedirectory structureencodedn
URLsto distinguistroutelinks. We adoptthefollowing
heuristics:

e A link goingfrom a pageto a pagein a subdirectory
maybearoutelink.

¢ A link goingfrom apageto apagein anupperdirec-
tory is neveraroutelink.

e A link going from a pageto anindex page,i.e. a

pagenamedi ndex. * or a URL endedby /, in the
samedirectoryis never a routelink. Otherwise,a link
betweerpagesn a samedirectorymaybearoutelink.
¢ A link goingfrom a pageto a pagein anincompara-
ble directorycanbe a routelink only whenthosetwo
directoriesaresiblings,i.e. immediatesubdirectoriegn
the samedirectory

¢ A link goingfrom apageto apageonadifferentWeb
senermaybearoutelink in somecaseg21], e.g.when
a logically single Web site is physically divided into
multiple senerssuchaswww. acm or g, wwil. acm
or g, andsoon. In this researchhowever, we assume
thatalogical informationunit never spanmultiple Web
seners. Therefore,in this researchwe assumdinks
acrosdifferentWeb senersareneverroutelinks.

Thesearemodifiedversionof theassumptionsdopted
in [21]. We modified themin two ways. First, we
aremoreconserative herebecausén this researctwe
want to excludeonly links that are clearly not a route
link. Second,n this researchwe wantto detectroute
links in orderto reducethe costof detectionof logical
information units. As explainedin a later section,in
our currentimplementationwe incrementallyretrieve
pagesstartingat URLSs given by otherexisting search
engines.We distinguishnon-routelinks in orderto re-
ducethe time cost by not retrieving pageslinked via
non-routelinks. Therefore we have to decidewhether
alink canbearoutelink or notbeforeretrieving its des-
tination page. The heuristicsabore were simplified so
thatthey useonly URLs of sourceanddestinatiorpages
of links.

3.2 Extraction of Minimal Subgraphs

Next stepis to extractminimal subgraphsncluding all
the givenquerykeywords. In our prototypeimplemen-
tation,we extractthemby thefollowing procedure:

1. Wetransformthequeryof theform Q = k1 A -+ Ak,

into adisjunctve query@’ = ki V --- V k;,, andsub-
mit Q' to an existing searchengine. Currently we are
usinggoo[7], whichis the mostpopularsearchengine
in Japan.

2. We traverselinks one stepdeeperstartingfrom every

3.
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pagereturnedby thatquery Wetraverseonly links that
aredeterminedasroutelinks by the methodexplained
above.

After we have retrievedall pagedinkedfrom the pages
in the queue we examineif ary subgraphincludesall



thequerykeywords.

. Whenwe have found enoughnumberof answerswe
stopthetraverse.Otherwisego backto Step?2.

. In mary casesthereare subgraphghat have exactly
the sameset of nodesincluding the query keywords,
but differs only in nodeswith no querykeywords. We
exclude thosesubgraphsout the one with the highest
rank. The methodto computerankis explainedin the
next subsection.

3.3 Ranking Method

Next stepis to sortfoundminimal subgraph#n orderof
scorescalculatedbasedon the localities of querykey-
words. In this paperwe proposehefollowing function
F to calculatethe scoreof a subgraphG:

Y (K@) +0)!

veEV

F(G)

whereV is asetof pagesn G, andK (v) is thenumber
of querykeywordsappearingn the pagev. C is apa-
rameteto adjustthecostvalue,whichwill beexplained
later

Thisfunctionsumsup thecostof every pagein thesub-
graphG. Subgraphsvith smallervalue of F(G) are
ranked higher The costof eachpageis (K (v) + C)~!.
The larger the numberof keywordsin the pageis, the
smallerthe costof thatpageis.

We canalsointerpretit asconsistingof two factorsas
below:

F(G)=n- % S (K(v) +C)!
veV

wheren is the numberof pagesn V. Fromthis inter-
pretationwe canseethefollowing propertieof F(G):

e Whenthe secondfactoris constant,F'(G) is propor
tionalto n, i.e.the sizeof the subgraph.

e Whenthe size of the subgraphs constant,F'(G) is
proportionalto the secondractor the averageof thein-
verseof (K (v) + C), whichis, very roughly speaking,
inverselyproportionalto the averageof K (v).

e Moreover, thefollowing inequalityholds:

L EE) 0> {2 Y (K@) + O
veV veV

Thatis, the averageof the inverseof (K (v) + C) is
greaterthan or equalto the inverseof the averageof
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Current Current Previous
Minimal Subgraph Formula Formula E |
(c=1) (C=3) ormula
@ kynkonks 0.250 | 0.167 | 0.333
(2) Kinky konkg 0.667 0.400 0.500
kinks kg
?3) 0.833 0.450 0.750
ki konkg
O
() Kok, Ky kpiky| 1167 | 0.650 | 0.667
o—0—=0
kinky ko kg
G o0 | 1333| 0700 | 0833
ki ky  konkg
(6) kynksy Konkg 1.667 0.733 1.333
oO—0—=0
(7) Ky Ky ks 1.500 0.750 1.000
o—0O0—-~0
kinky kg
8) O e o 1.833 0.783 1.500
ky Kon k3

Figure 1: Examples of F'(G)

it. Equality holds only when K (v;) = K (v;) for all
v;,v; € V. Generally whenthe averageof K (v) is
constantthe larger the variationof K (v) is, thelarger
the averageof theinverseof (K (v) + C) is, andthere-
fore,sois F(G).

e ThelargerC is, the strongerthe effect of the size of
the subgraplon F(G) is. Onthe contrary the smaller
C is, thestrongettheeffectof K (v) is. Particularly the
effect of the variation of K (v) becomeamore signifi-
cant. WhenC' = 0, subgraphsncluding a pagewith
no keyword are eliminatedevenif otherpagesnclude
mary keywordsbecausehe costof apagewith nokey-
wordis infinite.

On the otherhand, F(G) doesnot reflectthe shapeof

thegraphatall. For example,asubgraprconsistingof a

rootpageandits two childrenanda subgrapttonsisting
of threepagesorganizednto a sequencéave thesame
scoreaslong as K (v) of thosethreepagesare equal.
The reasonof this designdecisionis that the shapeof

the graphsdependon the organizationstyle of authors,
andwe cannottell which shapeis better For example,
thesamedocumenmaybeorganizednto onerootpage
andits mary childrenby someauthor andbeorganized
into a sequencdy otherauthor

Figure 1 shows the valuesof F(G) for various sub-
graphs.Here,we show two casesF'(G) with C =1 in



the secondcolumn,and F(G) with C' = 3 in thethird
column. In the fourth column,we alsoshaw the score
of eachsubgraplcomputedoy the formulaproposedn
[9]. It wastheformulabelow:

D

veV

(min(K (v), -))~*

n

(In [9], theinverseof the formulaabove wasused,and
subgraphsvith larger F(G) wasranked higher In this
comparisonhowever, we usetheinverseof it in orderto
makeit easieto compargheresultof two formulae.)In
theformulaproposedn [9], its scoredoesnot properly
reflectthe size of the graph(e.g.see(3) and (4)). In
our new function, however, the sizeof the graphis the
primaryfactor

In Figurel, subgraphsresortedin orderof:

. thenumberof pages,
. theaverageof K (v), and

. thevariationof K (v).

WhenC = 3, the orderof the costis exactly the same
order WhenC' = 1, theorderof (6) and(7) is reversed.
It is becausavhenC is small, the effect of pageswith
smallnumberof keywordsis strong.

F(G) reflectsthe distribution of the locality of key-

words acrosspagesin the subgraph. When keywords
aredistributedto mary pagesyn becomedarge. When
n is constantfthe morethelocalitiesof keywordsover-

lap,thelargertheaveragenumberof K (v) is, andthere-
fore,thesmallerF(G) is. (See(2) and(3), or (4), (5),

and (7) in Figure 1.) Whenthe averageof K (v) is

constant,subgraphavhere keywords are continuously
overlappingin every pageis ranked higherthan sub-
graphswhich can be divided into two (or more) sub-
graphswith mary keywords and pagesbetweenthem
with few keywords. (See(5) and(6), or (7) and(8) in

Figurel.)

3.4 Appearance Density of Words

Next, we examinewhethertwo wordsappearingn the
samepagearereally relatedto eachother Evenwhen
two words appearin the samepage,sometimegshese
wordsarenotrelatedatall. For example,supposdhere
is averylong “links page”listing mary links andbrief
explanationsfor them. If a querykeyword appearsat
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somavherenearthetop of thatpage andanotheruery
keyword appearsnearthe bottom of that page,those
two keywordsmustnot berelatedstrongly We wantto
ranksuchpagedow.

To measurehow stronglywordsin the samepageare
related we useappearance density [15] of thosewords.
An appearancdensityof aword at a positionis calcu-
latedbasednthefrequeng of theword within a“win-

dow” aroundthatposition. We regardit asreflectingthe
importance por the degreeof the influence,of the word
attheposition.

To calculateappearanceéensityof words, we needto
selecta window function. We considerthat a docu-
mentis a sequencef words, and supposel. denotes
the length of the sequence.Window function defines
theweightvaluefrom O to 1 for eachpositionfrom 1 to
L in the sequence.The mostsimplewindow function
is arectangulawindow functionwhichgivesl to every
positionwithin awindow of somefixedwidth andgives
0 elsavhere. In this paper we use Hanningwindow
function. h;(z), Hanningwindow function centeredat
1, is definedby thefollowing formula:
otherwise

(1)

whereW is the width of a window (a rangewherea
non-zeroweight is given). h;(i) givesits maximum
valuel at the centerof the window, i.e. at: = [, and
it getssmalleras: getsfar from the center

2(1+ cos2rih) i—1 <%

Py (i)

[en}

di(7), theappearancdensityof aword ¢ ata position:
usingHanningwindow function,is definedasfollows:

L

> hi(h) - ai(h)

i=1

dy (1) (2

wherea, (i) is definedasbelow:

s

di(7) sumsup theweightvaluesof all positionswhere
the word ¢ occurs. We considerthat it expresseshe
importancegheword ¢ hasatthepositionz, andthatthe
areawhered, (i) is highis thelocality of theword ¢.

theword ¢ appearsatthe positionsi
otherwise

a (i)

Figure 2 shovs examplesof d;(z) for t;. In the docu-
mentat the top, ¢; occurstwice, andthe distancebe-
tweenthem is longer than the width of the window.



t1

[
Figure 2: Examples of dy(z)

dy, () in that documenthastwo separatepart of the
form of the window function asshovn at the right of
thedocumentln thedocumenttthebottom,t; occurs
twice, and the distancebetweenthem s shorterthan
the width of the window. d;, (i) in that documentis
shavn at the right of the document. In this case,the
two partscorrespondingo two occurrencesverlaps,
andthegraphis sumof two graphsof thewindow func-
tion.

In orderto measurgheimportanceelative to otherpo-
sitionsin thatdocumentwe normalized, (i) sothatthe
peakof d;(z) within adocumenbel. We definerelative
appearancdensitycit(i) asfollows:

d(i)

11%1]?%XL dy (J)

di(i) =

Now we definer (¢, t2), the degreeof theinterrelation
of two wordst; andt,, by theformulabelow:

r(ti,t2) = 1@?3([, min(Jt1 (Z)a dt, (7’))

Figure3 shawvs anexampleof r(t1,t2). In thatgraph,
thedottedline representd;, (z) andthenormalline rep-
resentsly, ;). Thenr(t1,2) is thevalueof dy, (i) atthe
rightmostpeak,whichis the highestpeakamongthose
thatarewithin d, (¢).

d(i)
1.0
0.8
0.6

r(t1,t2) ‘
0.4} !

]
Lo

0.2’ 1 [
r

]

Figure 3: An Example of 'l"(tl,tQ)

Q|

()

=

Figure 4: Examples of related words and unrelated
words
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Whenthelocalitiesof two wordsdo notoverlapatall as
in theexampleatthetop of Figure4, r(t1,t3) = 0. On
theotherhand,whenthelocalitiesof two wordsgreatly
overlap,r(t1,t2) hasalarge valueasin the exampleat
thebottomof Figure4.

In Webpageshowever, wordsin atitle tag,or themain
headingat the top of a pagehave their influenceall
throughthepageevenif they donotappeain therestof
the page.To give specialtreatmento thesewords,we
defined; (i) = 1 for ary i if ¢ is in atitle tagorin amain
headingof a page. Title tagscan easily be detected.
On the otherhand,in orderto detectthe main head-
ings of pageswe usea Perl moduleHTML::Parsein
HTML-Tree,whichis afreesoftwarelibrary distributed
by libwww-perl [18].

In orderto make F'(G) reflectthelocality of keywords
within pageswe redefineF'(G) asbelow:

F(G) =) (A-K(v)+B-Yy, .erwr(tit)+0) "
veV

whereT'(v) is the setof querykeywordsappearingn
V.

Now the formula hasthree parameters4, B, and C.
Coeficient A and B definethe weight givento K (v)
andr(ti,t2). Currentlywe aretestingthis formulaby
experimentandfindingthebestvaluesfor A, B, andC.
The evaluationof the real effectivenesf this formula
is afutureissue.

3.5 Preliminar y Experimental Results
We testedthe following querieswith 2 or 3 keywords:

e Q1: notebook,card, catalog— whoseintentionis
to collectall the productcatalogpagesof PC cardsfor
notebookcomputers

e Q2: “Ryoichi Sano”,“K obeUniversity”— whosein-
tentionis to find thehomepag®f Ryoichi Sanowhois
astudenbf KobeUniversity (Both“Ryoichi Sano”and
“K obeUniversity” aretreatedasonewordin Japanese.)

Theresultof Qlis shavnin Tablel. Thistableshows:

e thenumberof returnedsubgraph®f sizen,

¢ the numberof correctsubgraph&mongthe returned
onesof sizen,

o theratio of thenumberof correctonesof sizen to the
returnedonesof sizen,

¢ theratio of the numberof correctsubgraph®f size
lessthann to the numberof returnedonesof sizeless
thann, and
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o recallratiorelativetorn < 5, i.e.theratioof thenum-
berof correctsubgraphsf sizelessthann to thenum-
berof correctsubgraphsf sizelessthan5s.

forn from1to5.

For Q1, very large percentagef correctanswersare
consistingof onepage.Thereforethey canberetrieved
by a simplepage-basedonjunctive query In Websites
of somecompanieshowever, the word “catalog” does
not appealin eachcatalogpagebut appearonly in the
root pagesof thosecatalogpages. This kind of pages
areretrievedassubgraph®f size2 or 3. No subgraphs
of sizelargerthan4 areretrieved.

Althoughthe minimal subgraphapproactdoesnot sig-
nificantly improve the recall ratio for Q1, it doesnot
significantly reducethe precisionratio either There-
fore,whenwe wantto create‘complete”list of catalog
pagesf PCcards,ntroducingminimal subgraphguery
is meaningful.

Table2 shaws the resultof Q2. The homepagef Ry-
oichi Sanocannotbe retrieved by a simple page-based
guerybecause:

e in the memberlist pageof our researchgroup, the
word “Ryoichi Sano”"appearsut theword “K obe Uni-
versity” doesnot,

e thehomepag®f Ryoichi Sanois dividedinto amain
frame and a sub-frame,andin theseframes,the word
“Ryoichi Sano” appearsbut the word “K obe Univer
sity” doesnot,and

o thereis a separatgpagedescribingthe profile of Ry-
oichi Sano,which is linked from the sub-frameof his
homepageandthatpageincludestheword “K obeUni-
versity” but nottheword “Ryoichi Sand.

As aresultof it, the homepagef Ryoichi Sanois re-
trieved by Q2 asa subgraptof size4 (the memberlist
page two framesof homepagesandthe profile page).

As faraswe seetheresultof thoseexamplequeriesthe
minimal subgraphapproachseemsuseful for the fol-
lowing kindsof queries:

¢ recall-orientedqueries,i.e. querieswhere we want
“complete”list of relevantpagesand

e queriesto retrieve very specificpagewhich mustbe
someavherebut whoseURL is unknavn, for example
the homepageof xxx. In this case,if somekeywords
which seemvery appropriatdor queryhapperto occur
only in neighboringpagesminimal subgraphapproach



Table 1: Precision and Recall Ratios for Q1

n (thesizeof subgraphs) 1 2 3 4 5

thenumberof returnedanswers| 980 27 21 0 0
thenumberof correctanswers 682 17 12 0 0
precisionratio (within eachn) | 0.696 | 0.629| 0.571 - -
precisionratio (accumulatie) | 0.696| 0.694 | 0.691| 0.691| 0.691
recallratio (relatveto n < 5) 0.959| 0.983| 1.000| 1.000| 1.000

Table 2: Precision and Recall Ratios for Q2

n (thesizeof subgraphs) 1 2 3 4 5

thenumberof returnedanswers 0 0 1 1 0
the numberof correctanswers 0 0 0 1 0
precisionratio (within eachn) - — 1 0.000| 1.000 -
precisionratio (accumulatie) - — 1 0.000| 0.500| 0.500
recallratio (relatveto n < 5) 0.000| 0.000| 0.000| 1.000| 1.000

is very useful.

4 DISCUSSION

In this sectionwe discusghe semantic®f conjunctive
qgueriesfor Webretrieval andthe rationality of our ap-
proach.

In mostsearchenginesthereis only oneform of con-
junctive queries:a list of keywordsin orderof impor-
tance. Conjunctie querieswith multiple keywordst1,
to, andts are,however, usedin variousintentionssuch
as:

e also query:intendingto retrieve pagediscussing,
andalsot,, andalsots,

e and query:intendingto retrieve pagediscussingt;
andty andts”, and

e of query: wherethereis a clear order amongkey-
wordsfrom generatermsto specializederms,andthe
keywords narrov down a topic stepwisein that ordet
like“t; of ¢y of t3.”

The classof also queriesis the mostgeneralclassin-
cluding all conjunctive queries. A typical exampleof
also queryis a querywith keywords“Aug. 1999” and
“ACM”", whoseintentionis to retrieve homepagegor
ary eventsin July 1999 sponsoredby ACM. In this
query July 1999 and ACM are not directly relatedto
oneanother They areindependentlynarraving down
thetopic from differentaspects.

and queriesarethe specialcaseof also querieswhere

thekeywordsarerelatedto eachother andarecooper
atively describingthetopic of theinterest.An example
of and queryis a querywith keywords“Web” and“vi-
sualization”, whoseintentionis to retrieve pagesdis-
cussinga topic relatedto both Web and visualization
techniquese.g.visualizationof Webdata,or visualiza-
tion of somekind of datausingWebervironments.

of queriesarespecialcase®f and querieswherethere
is a clearorderamongkeywordsfrom generatermsto
specializederms. An exampleof of queryis a query
with keywords“Workshop”,“SIGWEB”, and“ACM”,
whoseintentionis to retrieve homepagesf workshops
sponsoredy SIGWEB of ACM.

Therearealsocombination®f thosethreekind of con-
junctions.In addition,thosethreekindsof conjunctions
cannotalwaysbedistinguishectlearly Therearemedi-
umsof sometwo.

The appropriatecriterion for ranking retrieved query
answersvaries dependingon the type of queries. In
this researchwe usethe size of subgraphsand over
lap of locality of query keywords. We usethe over
lap of locality of query keywords becauseve mainly
focuson and queries,where keywords should be re-
latedto eachotherin correctanswers.If we focuson
also queriesthe overlapof locality of querykeywords
arenotnecessarilymportant,andthe sizeof subgraphs
shouldbe the only importantfactorfor ranking. If we



focuson of queriesthe shapeof graphsandhow query
keywordsappeaiin the subgraph(e.g. the order) may
be additional meaningfulinformation for betterrank-
ing. The verificationof theseidea,the supportof more
thanonekind of conjunctive queriesandproviding dif-

ferentrankingfunctionsfor them,with experimentss a
futureissue.

As discusse@dbove, whenwe focuson and queriesye-
lation betweenthe occurrence®of query keywords is
very important. Whenwe usesubgraphsas the logi-
cal informationunit for retrieval, relationbetweerkey-
wordsandanchorspointingto otherpageswvhereother
keywordsoccuris alsovery important. For example,if
akeyword occursin theanchorstringof somelink, and
anothelkeywordoccursin thepagepointedby thatlink,
thenthosetwo keywordsmustbestronglyrelatedn that
document. Thereare a coupleof researcheghat pro-
posedto include wordsin anchorstringsinto indexes
of pointedpages[20, 3, 17, 21]. Whenwe introduce
the minimal subgraphapproachwe alsoneedto exam-
ine the relation betweenthe pointed pageand all the
occurrence®f query keywordsin the sourcepageof
theanchor The methodexplainedin the subsectior8.4
musteasilybe extendedo includetherelationbetween
keywordsandanchorsThisis anotherfutureissue.

5 CONCLUSION

In this paperwe developeda coupleof new techniques
for theretrieval of logicalinformationunit in Webdata
basedntheminimal subgraplapproachFirst, we pro-

posedthe conceptof routelinks, which arelinks that

are meantto be the standardorowsing routeswithin a

singleinformationunit, anddevelopeda methodto dis-

tinguishthemfrom other kinds of links. Second,we

designedanew formulafor therankingof minimal sub-

graphsncludingall the givenquerykeywords. It ranks
subgraphd¥asedon the distribution of querykeywords

within subgraphs.Third, we proposeda extensionto

that formula which takes into considerationnot only

distribution of keywordswithin a subgraphout alsodis-

tribution of keywordswithin a page. For the first and

thesecondne,we shavedsimpleexperimentsFor the

third one,the verificationof the ideawith experiments
is afutureissue.
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