Improving Multiclass Classification in Crowdsourcing
by Using Hierarchical Schemes

Xiaoni Duan
Kyoto University
Kyoto, Japan
duan@dLsoc.i.kyoto-u.ac.jp

ABSTRACT

In this paper, we propose a method of improving accuracy of mul-
ticlass classification tasks in crowdsourcing. In crowdsourcing, it
is important to assign appropriate workers to appropriate tasks.
In multiclass classification, different workers are good at different
subcategories. In our method, we reorganize a given flat classifica-
tion task into a hierarchical classification task consisting of several
subtasks, and assign each worker to an appropriate subtask. In this
approach, it is important to choose a good hierarchy. In our method,
we first post a flat classification task with a part of data and collect
statistics on each worker’s ability. Based on the obtained statistics,
we simulate all candidate hierarchical schemes, estimate their ex-
pected accuracy, choose the best scheme, and post it with the rest
of data. In our method, it is also important to allocate workers to
appropriate subtasks. We designed several greedy worker allocation
algorithms. The results of our experiments show that our method
improves the accuracy of multiclass classification tasks.

KEYWORDS

task design; worker assignment; task assignment; annotation

ACM Reference Format:

Xiaoni Duan and Keishi Tajima. 2019. Improving Multiclass Classification
in Crowdsourcing by Using Hierarchical Schemes. In Proceedings of the 2019
World Wide Web Conference (WWW’19), May 13-17, 2019, San Francisco, CA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3308558.
3313749

1 INTRODUCTION

Classification task, such as image categorization, is one of the
most common types of tasks in crowdsourcing. Classification into
multiple categories are called multiclass classification. For mul-
ticlass classification, flat classification schemes, which show all
choices of categories to workers at once, is commonly used. Many
crowdsourcing platforms, such as Amazon Mechanical Turk (http:
//www.mturk.com), provide templates of flat classification scheme.

In crowdsourcing, it is important to assign workers to tasks
that they are good at in order to improve the quality of the task
outputs. In multiclass classification, some workers are good at some
subcategories while other workers are good at other subcategories.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313749

Keishi Tajima
Kyoto University
Kyoto, Japan
tajima@i.kyoto-u.ac.jp

In the ordinary flat classification scheme, however, all the workers
are assigned to the same task including all subcategories.

We propose a new approach to multiclass classification tasks.
Given a flat multiclass classification task, we reorganize it into a
hierarchical classification task consisting of several subtasks. We
can then assign each worker to a subtask that she is good at.

For example, a flat classification task of classifying images of
Canis animals into 7 categories (Siberian Husky, Alaskan Malamute,
Samoyed, German Shepherd, wolf, coyote and dhole) can be reor-
ganized into a two-level hierarchical classification task shown in
Figure 1. This task consists of the following three subtasks: (1) a root
task of classifying images into two top-level subcategories: (Husky,
Malamute, Samoyed, Shepherd) and (wolf, coyote and dhole), which
intuitively correspond to subcategories “dogs” and “wild species”,
respectively, (2) a task of classifying images that have been classi-
fied into the dog category further into the four breeds, and (3) a
task of classifying images that have been classified into the wild
species category further into the three species.

In this hierarchical task, we can assign different workers to dif-
ferent subtasks. If we have workers who are good at distinguishing
these four dog breeds but not familiar with the wild species, we
can assign them to the subtask of classifying dogs. Similarly, if we
have workers who are familiar with wild animals but not familiar
with dog breeds, we can assign them to the subtask of classifying
wild species. Some workers are assigned to the root task of distin-
guishing dogs and wild species, which is relatively easy. We expect
this assignment would improve the overall classification accuracy.

Another advantage of hierarchical schemes is simplicity of tasks.
We expect that each subtask with a fewer choices requires less
cognitive load and less execution time than the original flat task.

On the other hand, a disadvantage of hierarchical schemes is its
cost. In a two-level hierarchical classification scheme, each data goes
through two subtasks, thus the total number of the required task
instances are double of that of the flat scheme. However, when we
have enough budget and enough time, a method that can improve
the accuracy of the output by fully utilizing these resources is useful.

Another standard method of improving the quality of crowd-
sourcing tasks by using more resources is the majority voting: we
assign multiple workers to one task, and take majority vote. Im-
provement by the use of votes by two workers can be bigger than
the improvement by the use of two-level hierarchical scheme. How-
ever, the majority voting and hierarchical reorganization are not
exclusive with each other. For example, we can assign five workers
to each subtask in a two-level hierarchical scheme, and take their
majority vote. It requires ten workers for each data, so we could
instead assign ten workers in a flat classification scheme. We should
compare the accuracy of these two schemes. In other words, we

https://doi.org/10.1145/3308558.3313749
https://doi.org/10.1145/3308558.3313749
http://www.mturk.com
http://www.mturk.com
https://doi.org/10.1145/3308558.3313749

German Alaskan Siberian Samoyed Gray Wolf
Shepherd Malamute Husky

Figure 1: Example of a hierarchical classification scheme

should compare the benefit of two-level schemes with the benefit
of doubling the number of workers in the majority voting scheme.

In the majority voting, we can assign as many workers to one
task as we want, but the improvement is likely to stop after we
reach some number of workers. For example, increasing the number
of workers from five to ten is not likely to improve the accuracy
significantly. We therefore expect that the benefit of the two-level
schemes is bigger than the benefit of doubling the number of work-
ers when we have already assigned enough number of workers.

In our hierarchical reorganization approach, there are many
ways to reorganize a given flat classification task into a hierarchical
one, and we need to choose an appropriate hierarchy. In this paper,
we propose a method of selecting an appropriate hierarchy. We first
post a flat classification task with a part of data as a worker quali-
fication task, and collect statistics on each worker’s ability. Based
on the obtained statistics, we simulate all candidate hierarchical
schemes and estimate their expected accuracy. We then choose the
best scheme, and post it with the rest of data.

In our method, it is also important to allocate workers to appro-
priate subtasks in the simulation step, and when posting a hierarchi-
cal task. We designed several greedy worker allocation algorithms.

In order to evaluate our method, we ran several classification
tasks on Amazon Mechanical Turk. The result shows that hierarchi-
cal schemes can improve the accuracy of multiclass classification if
we choose appropriate hierarchies.

The contribution of this paper is summarized as follows:

e we propose a hierarchical reorganization approach for im-
proving the accuracy of multiclass classification tasks,

e we propose a method of selecting appropriate hierarchy and
a method of assigning workers to appropriate subtasks, and

o we experimentally confirmed that our method can improve
the accuracy of multiclass classification tasks.

2 RELATED WORK

Hierarchical classification has been studied much in machine learn-
ing [4, 10, 14], but only in a few studies in crowdsourcing.
Vempaty et al. [15] proposed a method of transforming a flat
multiclass classification (e.g., into multiple dog breeds) into a com-
bination of many binary classifications (e.g., large/small dogs, and
long/short tail dogs). They represent the results of the binary clas-
sifications of a data by a sequence of 0/1 and decode it into a class
(e.g., a breed) based on coding theories. Their method uses a combi-
nation of binary classifications, not hierarchical one. In addition,
appropriate binary classifications need to be specified manually.

Weng et al. [16] proposed a method of reorganizing a task of
selecting data satisfying multiple conditions. Instead of asking all
conditions at once, they reorganize a task into a hierarchical one
where questions are asked one by one. In this scheme, they can
reduce the number of tasks by narrowing down the candidates in
earlier steps. Their goal is to reduce the workload in selection tasks
while our goal is to improve the accuracy in classification tasks.

Otani et al. [12] proposed a method of aggregating multiple
answers in flat multiclass classification tasks where classes have
hierarchical relationships. For example, suppose two workers clas-
sify a given book into Society.Sociology category, two workers
classify it into Science.Medical, and one worker classify it into Sci-
ence.Others. In this case, Society.Sociology and Science.Medical
have two votes, but they choose the latter because three of the five
workers voted to Science category. The task shown to workers in
their method is a flat multiclass classification task, and discovery
of hierarchical relationship is not discussed.

Chilton et al. [2] and Bragg et al. [1] proposed a workflow for
creating hierarchical taxonomy by crowdsourcing. In their methods,
each worker classifies a small fraction of the data, and their methods
create a globally consistent taxonomy based on the answers. Their
purpose is to create a semantically meaningful hierarchy while our
purpose is to select a hierarchy that best improve the accuracy of
a classification task. As shown later in our experiment, the best
hierarchy is not necessarily a semantically meaningful hierarchy.

There have also been many proposals of methods of assigning
workers to appropriate tasks. The Hungarian algorithm [9] is a
classical algorithm for the optimal task-worker assignment. How-
ever, we cannot simply use the Hungarian algorithm for assigning
workers to hierarchical subtasks because the accuracy of subtasks
in hierarchical classification tasks have inter-dependency: if the
results of the upper subtasks are wrong, it cannot be corrected in
the lower subtasks. In addition, the Hungarian algorithm is too slow
when we have many workers. We develop new greedy algorithms
for assigning workers to hierarchical classification subtasks.

Mavridis et al. [11] proposed a worker allocation method based
on the hierarchical relationship between required skills. Their skill
hierarchy, however, does not correspond to classification hierarchy,
and we cannot use it for worker allocation in our method.

Our hierarchical schemes require more workers, and such re-
sources can instead be used for repeated labeling as explained before.
Sheng et al. [13] showed that repeated labeling does not always
improve the output quality. For deciding whether we should assign
more workers or not, Gao et al. [5] designed two models to estimate
the profit of additional tasks. Kamar and Horvitz [7] also proposed
a method of deciding whether to hire more workers or not. Karger
et al. [8] has shown a theoretical result on the trade-off between the
quality and the number of workers for each task in multiclass clas-
sification tasks. We can use these methods to determine whether
we should introduce hierarchical schemes or should increase the
number of workers for one data instead.

3 OUR METHOD

In this section, we explain the details of the four steps of our method:
(1) posting qualification tasks, (2) generating candidate hierarchi-
cal schemes, (3) estimating ability of workers at subtasks in the

candidate schemes based on the statistics obtained in the qualifica-
tion tasks, and (4) allocating workers to subtasks in the candidate
schemes for estimating the expected accuracy of the schemes.

3.1 Qualification Task

As explained in Section 1, we first post an ordinary flat classification
task with a part of data as a qualification task. Qualification tasks
are popularly used in crowdsourcing for eliminating spammers. We
use it also for calculating the accuracy of each worker for each
category, and creating a confusion matrix of each worker.

For these purposes, we need the ground truth for the data used
in the qualification task. In our experiment, we used data with
the ground truth. When it is not available, we can estimate it by
majority voting or more recent alternatives [3, 6, 17].

In our experiment, 20 to 30 items from each category was enough
to obtain stable statistics. We use the same data set for all users.

3.2 Hierarchical Scheme Generation

We then generate candidate hierarchical schemes, and run simula-
tions of them. There are, however, too many possible hierarchies to
run simulation of. In this paper, we only consider two-level schemes
because the number of levels corresponds to the number of subtasks
each data goes through, and the cost of the whole classification task
is proportional to the number of levels. The scheme in Figure 1 is
an example of a two-level scheme with one root task, two top-level
categories, two leaf tasks for them, and seven final leaf classes.
Because the number of two-level schemes is still large, we only
consider schemes with at most | n/2] top-level categories when we
have n leaf classes. Schemes with more top-level categories have
at least one top-level category with only one leaf class, and are
probably inefficient. With this restriction, the number of candidate

schemes for n final classes is ZIEZ/ZZJ S(n, k), where S(n, k) is the
Stirling numbers of the second kind.

3.3 Estimation of Worker Ability

Given a candidate scheme, we estimate two types of accuracy of
each worker based on the results of the qualification task: (1) accu-
racy in the root task, and (2) accuracy in each leaf task.

When we estimate the root task accuracy of a worker, if the
worker has classified an item of one class into another class within
the same top-level category in the qualification task, it is regarded
as a correct answer. For example, suppose we estimate the accuracy
of a worker at the root subtask in the scheme in Figure 1. If she has
classified a Husky image into the Samoyed class in the qualification
task, it is regarded as correct. We calculate the ratio of the correct
answers to the all answers in the qualification task.

On the other hand, when we calculate the accuracy of a worker at
aleaf task corresponding to a top-level category A, we only consider
items in the qualification task whose correct classes belong to A. In
the qualification task, the worker sometimes classifies an item in A
into some wrong leaf class ¢ which does not belong to A. When the
worker is really assigned to the leaf task for A, she cannot classify
the item to ¢ because c is not in the choices. In such cases, we
determine which class she would choose based on the probability
distribution of her answer in the qualification task.

For example, suppose we estimate the accuracy of a worker at the
leaf task for the top-level category “dog” in the scheme in Figure 1.
In the qualification task, the worker classified 6 images of Husky: 3
into the Husky class, 2 into Malamute, and 1 into wolf. When the
worker is assigned to the leaf task for the dog category, she cannot
classify an image into the wolf class, which is not in the choices.
When calculating her accuracy in this subtask, we assume that she
would classify the image she misclassified into wolf, either into
Husky or Malamute in the probability 3/5 and 2/5, respectively.

We also collect statistics on task speed of workers. In order to
minimize the response time of a task, the number of tasks assigned
to workers should be proportional to their task speed.

3.4 Worker Allocation Algorithms

We have calculated the accuracy of workers at subtasks in the
candidate scheme. In order to estimate the expected overall accuracy
of the scheme, we also need to decide worker allocation to subtasks.

Notice that we cannot simply allocate each worker to a subtask
for which she has her best accuracy. If we did it, we would have no
worker for difficult subtasks. We need to assign appropriate number
of workers to each subtask for minimizing response time.

We can assign a worker to more than one subtasks, but even if
we do it, the worker would only work on a subtask with the best
reward/time ratio until all the data at the subtask is processed. In
this paper, we assume that each subtask has far more data than one
worker can process. We, therefore, only consider simple worker
allocation where each worker is allocated only to one subtask.

There are too many ways to allocate workers to subtasks, and we
cannot calculate expected accuracy for all of them. Even with only
three subtasks and 20 workers, we have 3% > 3 billion ways to
allocate workers. To decide worker allocation without an exhaustive
search, we designed four greedy worker allocation algorithms.

Algorithm 1 gives priority to workers whose accuracy largely
changes depending on tasks. It is important to assign such workers
to appropriate tasks. On the contrary, we give the least priority to
workers who have the same accuracy for all tasks.

After calculating accuracy of workers for subtasks in the given
scheme, we create a worker list [, which is sorted by the accuracy
of workers at the root subtask in descending order. We also create

worker lists Iy, . .., I, each of which is sorted by the accuracy of
workers at the corresponding leaf subtask. Let r, ri', ..., r/ be u’s
ranks in I, [y, ..., Ir. We calculate the variance of r¥,rl*, ... r

for each worker. Here we measure the variance of u’s ability by
using her ranks instead of the accuracy values because the accuracy
values for different subtasks are incomparable. We then produce a
list of workers, W, sorted by the variance in descending order.

We also maintain variables jr, j1, . . ., j storing how many jobs
are remaining at the root task and each leaf task. Suppose we have
m data items, n leaf classes, and a hierarchical scheme with k top-
level categories, which includes ny, . . ., ny leaf classes, respectively.
We may not know the ratio of data in each leaf class, so we assume
that each leaf class has m/n items. We initialize j, to m and initialize
eachj; (i=1,...,k) toeither m*n;/nifn; > 1,or 0if n; = 1. We
are also given wy, for each u, the relative task speed of u.

We scan W starting from its top, and for each u in W, we find
the largest value among r¥,r¥,. .., r]':, i.e., the best subtask for u.

If it has remaining jobs, we assign u to that task and subtract the
expected number of jobs the worker u will do, i.e., 2m * wy, /X ;wj,
from the number of its remaining jobs. If it has no remaining job,
we assign u to the next best task for u.

Algorithm 2 is same as Algorithm 1 except that we use the
accuracy values instead of ranks. Because the accuracy values in
different tasks are incomparable, we normalize them to the standard
scores. Let a’ be the accuracy of worker u for the task i. For each
task i (i = r,1,...,k), we calculate the mean of accuracy a; =
\Zulay —a)?/|wl,
where |W| is the number of workers. We then calculate s}, the
standard score of the worker ability, by s} = (a} — a;)/0;. We use
the variance of s} instead of the variance of r/ when we sort W
and when we select the best subtask for u.

Algorithm 3 is the opposite of Algorithm 1 and 2. It gives priority
to tasks whose accuracy largely changes depending on the allocated
workers. In this case, we do not need to use rankings or standard
scores. For each task i, we calculate the average accuracy a; =
2u a} /IW] and the variance O'l-z = Yulaf - a@;)?/|W|. We then give
priority to a task i with the largest aiz, and assign it a remaining
worker with the highest accuracy for i.

Algorithm 4 gives priority to a task with the largest ratio of
remaining jobs. It repeatedly selects a task corresponding to the
largest value among jr/j(,),jl/j(l], . ,jk/jl(i, where j(r),j?, . ,jg are
the initial values of j,,ji,...,j; explained before, and allocates
a remaining worker with the highest accuracy for that task. We
repeat it until all the workers are assigned.

For all combinations of candidate schemes and our four alloca-
tion algorithms, we compute worker allocation, and compute the
expected overall accuracy of the task under that worker allocation.
We then choose the combination that achieved the highest accu-
racy, post the classification task using that hierarchical scheme, and
assign workers to subtasks by using that worker allocation.

Yu a}/IW]| and the standard deviation o; =

4 EXPERIMENTS

We ran experiments on two data sets on Amazon Mechanical Turk
(AMT). The results are explained in this section.

4.1 Experiment of classifying Canis Animals

In the first experiment, we compare the accuracy of flat and hier-
archical classification tasks classifying images of 7 kinds of Canis
animals explained in Section 1. In this experiment, we only consider
hierarchical schemes with two top-level categories, which we call
Aand B. We have 27 — 1 = 63 such schemes (excluding one scheme
that is equivalent to the flat classification).

We collected over 100 images of each of these seven kinds of
Canis animals, and obtained 800 images in total. We posted a flat
classification task with randomly chosen 200 images on AMT as a
qualification task. The remaining 600 images are used in the main
task later. One task instance consists of 20 images. We obtained
information on 153 workers, and removed 11 workers as spammers.

We then estimated overall accuracy of 63 hierarchical schemes
by allocating workers with Algorithm 1 and 4. For all 63 schemes,
both Algorithm 1 and 4 achieved better expected accuracy than
the accuracy observed in the flat classification task posted as the
qualification task, which was 0.746. In addition, for all 63 schemes,

Table 1: Best/Worst Hierarchical Schemes with Algorithm 1

rank | accuracy A B
1 0.866 | (Samoyed, wolf, coyote) others
2 0.862 | (Malamute, Husky, dhole) others
3 0.862 | (Shepherd, Malamute, Husky) | others
61 0.807 | (Shepherd) others
62 0.800 | (Malamute, wolf, dhole) others
63 0.776 | (Malamute, coyote) others
flat 0.746

Table 2: Confusion Matrix for All Users (bold fonts: > 0.1)

Malamute | coyote dhole wolf Shepherd | Samoyed | Husky
Malamute 0.611 0.002 0.009 0.016 0.024 | 0.038 | 0.300
coyote 0.018 | 0.618 | 0.134 | 0.182 | 0.016 | 0.018 | 0.015
dhole 0.010 | 0.209 0.698 0.030 0.012 0.018 0.015
wolf 0.053 | 0.118 | 0.026 | 0.674 | 0.022 | 0.029 | 0.077
Shepherd 0.009 0.009 0.022 0.008 0.917 0.018 0.017
Samoyed | 0.104 | 0.006 | 0.045 | 0.020 | 0.015 | 0.755 | 0.055
Husky | 0.218 | 0.010 0.008 0.040 0.028 0.023 0.674

Table 3: Accuracy of Real Tasks on AMT

Scheme Total | Root Sub-A | Sub-B
best scheme in Table 1 (3 to 4) 0.875 0.970 | 0.853 0.850
A: (wolf) B: others (1 to 6) 0.765 | 0.900 | 0.880 | 0.749
worst scheme in Table 1 (2to5) | 0.590 | 0.610 | 0.444 | 0.644
flat (majority voting) 0.833 - - -
flat (weighted majority voting) 0.767 - - -

Algorithm 1 achieved better accuracy than Algorithm 4. Table 1
lists schemes that achieved the three best and the three worst
accuracies with Algorithm 1. The columns A and B show the leaf
classes allocated to the two top-level categories.

Table 2 shows the confusion matrix calculated from the answers
by the workers in the qualification task. For example, it shows that
0.2% of Malamute images were classified as coyote. Misclassification
with a probability higher than 0.1 is shown in bold fonts. This table
shows that Malamute and Husky are most difficult to distinguish,
coyote and dhole are the next, and coyote and wolf follow.

In all the top three schemes shown in Table 1, the most difficult
pair, Malamute and Husky, are in the same top-level category, while
they are in different top-level categories in the two worst schemes.
It suggests that we can improve overall accuracy by allocating these
two kinds to the same top-level category, and assigning workers
who are good at distinguishing them to the leaf task corresponding
to that top-level category. Another confusing pair, wolf and coyote,
are also in the same top-level category in all the top three schemes.

We then posted three hierarchical classification tasks on AMT to
know their real accuracy (i.e., not the estimation by our simulation).
We chose the best scheme and the worst scheme in Table 1, and
also the best 1-to-6 scheme (i.e., one class in A and 6 classes in B) as
a medium-level scheme. Because the best scheme is 3-to-4 scheme
and the worst scheme is 2-to-5 scheme, these three schemes include
all n-to-m cases. Table 3 lists the three schemes and their results.

We have 600 images excluding 200 images used in the qualifica-
tion task. We randomly divide them into three sets of 200 images
and allocate them to the three hierarchical tasks. All 142 workers
are invited to the three tasks, which were posted at the same time.
We also posted a flat classification task with the same 600 images.

In all the tasks, five workers are assigned to each image. We used
two methods to aggregate the five answers: majority voting and
the standard EM-based weighted voting method [3]. When we have
a tie in majority voting (e.g., 2 votes to wolf, 2 to coyote, and 1 to
dhole), we randomly choose one of the classes involved in the tie.

We show the result in Table 3. Because the accuracy of the flat
classification with the weighted voting is lower than that with the
simple majority voting, we only used the simple majority voting in
the hierarchical tasks. The hierarchical scheme which was best in
the simulation achieved higher accuracy than the flat scheme. It con-
firms that we can improve the accuracy of a multiclass classification
task by reorganizing it into a hierarchical task.

However, the accuracy of the other two hierarchical schemes
are worse than that of the flat scheme although their expected
accuracy was higher than it. This result suggests that the choice of
hierarchical schemes significantly influence workers’ performance,
and if you choose an inappropriate scheme, it can result in the
accuracy that is worse than the expected accuracy estimated from
the workers’ performance in the flat classification task.

Also note that none of the best three schemes in Table 1 is the
semantically meaningful one shown in Figure 1. It shows that it is
not easy to manually determine the good hierarchy, and we should
compute it based on the ability of currently available workers.

To confirm that good hierarchies depend on the workers avail-
able at the time, we run the experiment of classifying Canis animals
twice. In the previous run, the most confusing pair, Malamute and
Husky, are allocated to one top-level category, and another con-
fusing pair, wolf and coyote, are allocated to the other top-level
category, in the three best schemes. In the second run, these two
pairs are assigned to the same top-level category in the two best
schemes. This happened because the set of workers who are good
at distinguishing Malamute and Husky, and the set of workers who
are good at distinguishing wolf and coyote, were relatively disjoint
in the previous run, but have more overlaps in the second run. As a
result, allocating both pairs to the same top-level category becomes
a better strategy. As shown in this result, the best hierarchical
schemes depends on the set of workers currently available.

4.2 Experiment with Reptiles and Amphibians

Next, we compare flat and hierarchical tasks classifying images of
the following 10 kinds of reptiles and amphibians: Komodo dragon,
frilled agama, chameleon, gecko, iguana, skink, giant salamander,
tuatara, and basilisk. In the previous experiment, we only gener-
ated hierarchical schemes with two top-level categories, but in this
experiment, we use 2 to 5 top-level categories.

We collected over 100 images for each class and obtained over
1000 images in total. We then published a qualification task on
AMT with 200 images, collected answers from 307 workers, and we
eliminated 44 workers as spammers, which result in 263 workers.

We computed the confusion matrix from their answers. We omit
the details, but the most frequent misclassification was 21.7% of

tuatara images classified into the iguana class, which look similar
and better known. Compared with Canis animals, the distinction
between confusing pairs and the others are not clear, and the con-
fusion matrix is less symmetric. This is because the 10 classes in
this task include both well-known classes and less-known classes.

We then generated all the hierarchical schemes with 2 to 5 top-
level categories, and ran Algorithm 1 to 4. We obtain the best ac-
curacy with Algorithm 2, which uses the standard score of the
accuracy of workers. Table 4 shows some results obtained with
Algorithm 2. It lists the best scheme, which has four top-level cat-
egories, the best one among those with five top-level categories
(202nd), the best one among those with three top-level categories
(6422nd), and the worst scheme. The worst scheme has five top-
level categories, four of which include only one leaf class. The best
to the 201th schemes all have four top-level categories.

In the best scheme shown in Table 4, basilisk is allocated to
the same top-level category as frilled agama and chameleon, to
which basilisk images are often misclassified. In this scheme, newt
and giant salamander, which are often misclassified to each other,
are also allocated to the same top-level category. Newt and giant
salamander are allocated to the same top-level categories in most
schemes with high accuracy (although it is not shown in Table 4).
This is similar to what happened in the previous experiment.

We posted hierarchical classification tasks on AMT with the four
schemes shown in Table 4, and assigned 263 qualified workers to
the subtasks by Algorithm 2. We divide 800 images that were not
used in the qualification task to four tasks so that each of them
has 200 images. In each subtask, each image is classified by five
workers, and we take the majority votes.

In this experiment, we calculate the accuracy of the flat scheme
by using the answers in the qualification task. In the hierarchical
tasks, we take majority votes by 5 workers, but in the flat task, we
take majority votes by 10 workers because our two-level schemes
require twice as many workers as the flat scheme. We randomly
choose 10 users who participated in the hierarchical classification
tasks, take the majority votes of their answers in the flat qualifica-
tion task, and calculate the overall accuracy. We repeat the random
selection of 10 users five times and took the average of the accuracy.
We only choose users who also participated in the hierarchical tasks
in order to be fair. If we include workers who did not participate in
the hierarchical tasks, the accuracy of the flat scheme was lower.

Table 5 shows the results. It also shows the result we would have
if we take majority votes by 3 workers for hierarchical schemes
and 6 workers for the flat scheme. When we calculate the accuracy
in these cases, we randomly choose 3 (or 6) workers from 5 (or 10)
workers and take their majority votes. We repeat it five times and
calculate the average of the accuracy.

When we take majority votes by 5 and 10 workers, our top and
the 202th schemes achieved higher accuracy than the flat scheme.
The 202th scheme achieved better accuracy than the top scheme.
However, the 6422th scheme shows lower accuracy than the flat
scheme, so it is again important to choose a good hierarchy.

On the other hand, when we take majority votes by 3 and 6
workers, the flat scheme achieved higher accuracy. The results
in these two settings shows that the improvement we obtain by
increasing the number of workers from 6 to 10 in the flat scheme is
not as big as the improvement we obtain by increasing it from 3 to

Table 4: Part of Hierarchical Schemes and their Expected Accuracy Obtained with Algorithm 2

rank | accuracy A B C D E

1 0.918 skink, tuatara Komodo dragon, gecko agama, chameleon, basilisk others -
202 0.903 basilisk Komodo dragon, gecko skink, agama, iguana newt others

6422 0.878 iguana, gecko, tuatara | skink, Komodo dragon, newt, basilisk | agama, chameleon, giant salamander - -
last 0.626 Komodo dragon chameleon skink iguana | others

Table 5: Result with Majority Votes by 5 Workers (10 for Flat
Scheme) and 3 Workers (6 for Flat Scheme)

Scheme | by 5(10) | by 3 (6)

1st 0.885 0.855

202th 0.890 0.845

6422th 0.830 0.820

last 0.860 0.755

flat (majority voting) 0.863 0.860

flat (weighted majority voting) 0.730 -

Table 6: Average Task Execution Time (in second) for Reptile
and Amphibian Images

flat task hierarchical task
all u u at root | u at leaf root leaf
best | 916.798 2372.66 578.958 | 2311.78 | 278.880

5 in the hierarchical schemes, and as a result, the accuracy of some
hierarchical schemes become higher than that of the flat scheme
when we have 5 (or 10) workers. This result suggests that our
hierarchical scheme is useful when we have a budget to hire more
workers, but we have already allocated enough number of workers
to each task, and the benefit of doubling the number of workers is
likely to be smaller than the benefit of hierarchical schemes.

4.3 Temporal Factors

When we take majority voting by the half number of workers in a
hierarchical task, the number of required task instances is the same
as in the flat task. We should also compare the workload of one task
instance. Subtasks in hierarchical tasks have a fewer choices, so it
may require lighter cognitive load than the tasks in the flat scheme.

To confirm it, we measured the average task execution time
for a task instance including 20 reptile and amphibian images in
the following cases: the average over flat tasks by all workers, the
average over flat tasks done by workers who are allocated to the
root task when they worked in the best hierarchical scheme, the
average over flat tasks done by workers who are allocated to the
leaf tasks when they worked in the best hierarchical scheme, the
average over the root task in the best scheme, and the average over
the leaf tasks in the best scheme. Table 6 shows the results.

The average execution time of flat tasks is 916.798, but the av-
erage over flat tasks done by workers who were allocated to the
root task in the best hierarchical scheme is 2372.66. It means that
our algorithm tend to allocate slow workers to the root task in this
scheme. The average execution time of the root task in the best
hierarchical scheme is almost the same. This is reasonable because
both of them show workers all the leaf classes as the choices. The

average execution time of the leaf tasks in the best hierarchical
scheme is shorter than that of the flat task done by the same work-
ers. This is also reasonable because the leaf tasks of the hierarchical
scheme shows fewer choices to workers. The sum of the average
execution time of the root tasks and the leaf tasks is bigger than
the double of that of the flat task. Therefore, when we have a time
constraint, hierarchical schemes have a disadvantage.

We also measured the time required by the worker allocation
algorithms. In the experiment with images of Canis animals, it pro-
cessed 63 schemes in a few minutes. In the experiment with images
of reptiles and amphibians, we have a huge number of schemes
because we generate schemes with 2 to 5 top-level categories, but
our algorithms processed all of them within a day. This cost is not
impractical when we classify a large number of data in crowdsourc-
ing because such a task usually takes far longer. If we have more
classes, and want to generate schemes including a larger number
of top-categories, the time required in this step can be prohibitive.
In that case, we should limit the number of top-categories. On the
other hand, the time complexity of the Hungarian algorithm is in
O(n?), and it is also infeasible when n is large.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new approach to multiclass classification
tasks in crowdsourcing. By reorganizing a task into a hierarchical
classification task consisting of multiple subtasks, we can allocate
workers with different expertise more appropriately to subtasks.

In our method, we generate all reasonable schemes, and esti-
mate their expected accuracy by virtually assigning workers to its
subtasks. For this step and also for the real execution of hierarchi-
cal tasks, we developed four greedy worker allocation algorithms.
They give priority either to workers whose ability largely changes
depending on tasks, to tasks whose accuracy largely changes de-
pending on workers, or to tasks with higher remaining job ratio.

We posted hierarchical tasks on AMT with two data sets. We
confirmed that we can achieve higher accuracy than the flat tasks
if we choose appropriate hierarchical schemes, and also confirmed
that our method can choose appropriate schemes. Because the best
algorithm among our four algorithms depends on the data set, the
best strategy is to use all of them to run simulation for all candidate
schemes, and choose the one that achieved the best accuracy.

Our worker allocation algorithms have large room for improve-
ment. We also need a method for efficiently enumerating promising
candidate schemes because we cannot enumerate all schemes when
we have many classes. They are remaining issues for future work.

6 ACKNOWLEDGMENTS

This work was supported by JST CREST Grant Number JPMJCR16E3,
Japan.

REFERENCES

[1] Jonathan Bragg, Mausam, and Daniel S. Weld. 2013. Crowdsourcing Multi-Label

[2

[3

—

Classification for Taxonomy Creation. In Proc. of HCOMP. 25-33.

Lydia B. Chilton, Greg Little, Darren Edge, Daniel S. Weld, and James A. Landay.
2013. Cascade: Crowdsourcing Taxonomy Creation. In Proc. of SIGCHI 1999-
2008.

Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm. Applied statistics 28, 1
(1979), 20-28.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. 2013.
Learning hierarchical features for scene labeling. IEEE TPAMI 35, 8 (2013), 1915—
1929.

Jinyang Gao, Xuan Liu, Beng Chin Ooi, Haixun Wang, and Gang Chen. 2013. An
online cost sensitive decision-making method in crowdsourcing systems. In Proc.
ACM SIGMOD. 217-228.

Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality manage-
ment on amazon mechanical turk. In Proc. of ACM SIGKDD workshop on human
computation. 64-67.

Ece Kamar and Eric Horvitz. 2015. Planning for Crowdsourcing Hierarchical
Tasks. In Proc. of AAMAS. 1191-1199.

David R Karger, Sewoong Oh, and Devavrat Shah. 2013. Efficient crowdsourcing
for multi-class labeling. ACM SIGMETRICS Performance Evaluation Review 41, 1
(2013), 81-92.

[o

[10

[11

[12

(14

[15

[16

[17

]

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics (NRL) 2, 1-2 (1955), 83-97.

Shailesh Kumar, Joydeep Ghosh, and Melba M Crawford. 2002. Hierarchical
fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis &
Applications 5, 2 (2002), 210-220.

Panagiotis Mavridis, David Gross-Amblard, and Zoltan Miklés. 2016. Using
hierarchical skills for optimized task assignment in knowledge-intensive crowd-
sourcing. In Proc. of WWW Conf. 843-853.

Naoki Otani, Yukino Baba, and Hisashi Kashima. 2015. Quality Control for
Crowdsourced Hierarchical Classification. In Proc. of IEEE ICDM. 937-942.
Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. 2008. Get another
label? improving data quality and data mining using multiple, noisy labelers. In
Proc. ACM SIGKDD. 614-622.

Carlos N Silla and Alex A Freitas. 2011. A survey of hierarchical classification
across different application domains. Data Mining and Knowledge Discovery 22,
1-2 (2011), 31-72.

Aditya Vempaty, Lav R Varshney, and Pramod K Varshney. 2014. Reliable crowd-
sourcing for multi-class labeling using coding theory. IEEE Journal of Selected
Topics in Signal Processing 8, 4 (2014), 667-679.

Xueping Weng, Guoliang Li, Huiqi Hu, and Jianhua Feng. 2017. Crowdsourced
Selection on Multi-Attribute Data. In Proc. ACM CIKM. 307-316.

Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier R. Movellan.
2009. Whose Vote Should Count More: Optimal Integration of Labels from
Labelers of Unknown Expertise. In Proc. of NIPS. 2035-2043.

	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Qualification Task
	3.2 Hierarchical Scheme Generation
	3.3 Estimation of Worker Ability
	3.4 Worker Allocation Algorithms

	4 Experiments
	4.1 Experiment of classifying Canis Animals
	4.2 Experiment with Reptiles and Amphibians
	4.3 Temporal Factors

	5 Conclusion and Future Work
	6 Acknowledgments
	References

