
Querying Composite Objects in Semistructured Data

Keishi Tajima

Department of Computer and Systems Engineering,

Kobe University, Japan

tajima@db.cs.kobe-u.ac.jp

Abstract

In this paper, we propose an entity-based style of
queries for semistructured data. First, we parti-
tion a semistructured data into subgraphs corre-
sponding to real-world entities, in other words, into
composite objects. To detect composite objects in
semistructured data, we use the exclusiveness of
references. If a reference is exclusive, then we re-
gard is as a composite link. Then, we develop a
query language for entity-based queries. That lan-
guage supports path expressions, in which we can
use edge expressions that match only with compos-
ite links or non-composite links. By using these
expressions in combination with wild cards, we can
specify queries of a form like “retrieve all entities
including these data items,” which we call entity-
based style queries. We show examples demonstrat-
ing how this style of query is useful especially when
one does not have enough knowledge on the schema
in advance.

Keywords semistructured data, composite ob-
ject, structure discovery, path expressions

1 Introduction

Semistructured data is schema-less, self-describing
data [1, 4]. In many researches, data models for
semistructured data are proposed [12, 5, 11, 2, 8].
Those data models slightly differ from each other,
but basically they all represent semistructured data
in a form of edge-labeled directed graph. Nodes in
a graph correspond to data objects, edges from a
node correspond to references from that object to
other objects, and labels on those edges correspond
to attribute names describing the meaning of those
references.

For example, Figure 1 shows a graph represent-
ing a semistructured data. This data represents a
part of a movie database. The root node at the
top of the figure works as the entry point of the
whole database, and it has references to all entries
of movies and actors. Each movie entry has two

To appear in Proceedings of the 5th International

Conference on Foundations of Data Organization

(FODO’98), Kobe, Japan, Nov. 1998.

appear

’Godzilla’ ’The Cable
Guy’

’Jim
Carrey’

’Broderick’’Matthew’

name

first last

nametitletitle

appear appear
cast

actormovie
ac

tor m
ovie

cast

leadingActoractor

Figure 1: An Example of Semistructured Data

attributes title and cast, and each actor entry has
two attributes name and appear. Those attributes
are represented by the edges outgoing from the root
node of each entry. Note that we assume that one
node may have multiple outgoing edges with the
same label because most data models proposed for
semistructured data allow it to improve flexibility.
In some cases, an attribute refers to a node repre-
senting another entry. For example, the attribute
cast of the entry of the movie “Godzilla” refers to
the entry of the actor “Matthew Broderick.” In
some cases, an attribute refers to a node represent-
ing a primitive value. For example, the attribute
title of the entry of the movie “Godzilla” refers to
a node representing a string value “Godzilla.” In
addition, in some cases, attribute values are fur-
ther organized into a hierarchy. For example, the
attribute name of the entry of the actor “Matthew
Broderick” is further organized into a hierarchy
consisting of a root node, two edges with labels
first and last, and nodes representing the values of
those two attributes.

As shown in the example above, semistructured
data is represented by a big continuous graph con-
sisting of uniform nodes and edges. In most cases,
however, as also shown in the example above, that
big graph consists of subgraphs representing var-
ious kind of real-world entities and references be-
tween them. For example, the example database
graph above consists of four entities, i.e. the movie
“Godzilla,” the actor “Matthew Broderick,” the

movie “The Cable Guy,” and the actor “Jim Car-
rey,” and references between them. As shown in
Figure 1, each entity in semistructured data is rep-
resented as a single-rooted tree.

Because of the lack of the rigid schema, subtrees
representing the same kind of entities may have
different structures. For example, two actor en-
tries in the above example are referring to different
structure through name attribute. In the same way,
two movie entries are referring to different struc-
ture through cast attribute. This structural het-
erogeneity makes set-oriented operations on those
semantically homogeneous sets of entities difficult.

To solve this difficulty, many query languages
for semistructured data support path expressions
including wild cards. For example, consider a query
“list the titles of all movies that feature an actor
named Carrey.” In those query languages, this kind
of queries are expressed by using wild cards, such
as in the following way1 :

select l
where movie⇒ t, t⇒title⇒ l, t⇒cast⇒[⇒]*n,

substring(n, ’Carrey’)

In this query, where clause describes path patterns
that should be matched with. “ ” is an anony-
mous variable that matches with any label, and *
means the repeat of any number of times including
zero. Thus, the expression [⇒]* as a whole is a
wild card that matches with any path of arbitrary
length. This wild card is used because the struc-
tures under cast attribute is heterogeneous, and the
users are uncertain of those structures. The path
patterns in the where clause of this query matches
with subtrees in the database that consists of an
edge with a label movie emanating from the root
of the database, and two paths beneath it, one of
which is starting with the label title followed by
some value l, and the other of which is a path of
arbitrary length starting with the label cast and
ending with some value n which include “Carrey”
as its substring. For each matched subtree in the
database, the qeury returns the value l.

In some cases, however, such wild cards that
match with paths of arbitrary length happen to
match with unexpected paths. For example, when
we apply the query above to the database shown in
Figure 1, the pattern cast⇒[⇒]*n matches with
the path starting cast edge from the entry of the
movie “Godzilla” to the entry of the actor “Broder-
ick,” going through appear edge to the movie “The
Cable Guy”, going through cast and leadingActor
edges to the actor “Jim Carrey”, and ending with
the label “Jim Carrey” in that entry. Therefore,
the result of the query above includes the movie

1 The syntax used in this example is ambiguous. We will
define more rigid syntax later.

title “Godzilla” although Jim Carrey does not ap-
pear in the movie “Godzilla.”

One approach to avoid that kind of unexpected
matching is to use more complicated regular ex-
pressions so that they eliminate those unexpected
matching. For example, the query above can be
rewritten as below:

select l
where movie⇒ t,

t⇒title⇒ l, t⇒cast⇒[ˆappear⇒]*n,
substring(n, ’Carrey’)

In the query above, [ˆappear]* is a regular expres-
sion specifying any paths not including the label
appear. The result of this new query does not
include the unwanted title “Godzilla.”

Specifying appropriate regular expressions that
match only with really needed paths is, however,
quite difficult task. It is because paths of arbitrary
length may reach to everywhere in the database
graph, and it is difficult if not impossible to an-
ticipate all “unexpected” cases. Our insistence is
that wild cards that match with paths of arbitrary
length are essentially dangerous. In some cases,
we certainly need such wild cards, but in most
cases, more restricted use of wild cards must be
more appropriate. For example, the intention of
the expression cast⇒[⇒]*n in the first query is
to skip some heterogeneous structure within the
cast attribute of movie entries, and is not to reach
everywhere in the database through other actor
entries and movie entries. Therefore, in this case,
we should restrict that expression to match only
with paths within a substructure in a movie entry.

From the observation above, in this paper, we
propose a query language for semistructured data
that supports constructs to controll the range of
wild cards. Our basic strategy is to detect each
entity in the database, and to specify whether each
wild card in a query is allowed to match with paths
extending over multiple entity or it matches only
with paths within one entity.

As mentioned before, by the term entity, we
mean logical data unit corresponding to each com-
plete and independent real-world entity. Entities in
semistructured databases are represented as rooted
connected trees. One similar conecpt that has been
proposed in the past database researches is com-
posite objects [7] in the object-oriented database re-
searches. A composite object is a hierarchy consist-
ing of objects that are strongly connected through
is-part-of relationships. Although a composite ob-
ject consists of multiple part objects, it is regarded
as one independent logical data unit as a whole.
The underlying concept of composite objects is that
objects have two kinds of references: those repre-
senting exclusive possesion of their part objects,
and those representing various non-exclusive rela-

tions between objects. The former type of ref-
erences are sometime called composite links, and
the latter are sometime called non-composite links.
Composite objects are connected subgraphs con-
sisting of only composite links.

Then, the next problem is how to detect such
entities, i.e. composite objects, in semistructured
data. In this research, we use the exclusiveness of
references. As suggested in the research of compos-
ite objects, we consider that entities are subtrees
consisting of only exclusive references. Based on
this assumption, we statically divide a database
graph into entities by examining each reference is
exclusive or not. This approach, of course, must
not always work perfectly. Queries on semistruc-
tured data are, however, essentially imperfect in
most cases because the user does not know all the
data structure appearing in the given semistruc-
tured databases. We believe our method at least
improves the correctness of queries on semistruc-
tured data.

The rest of the paper is organized as follows.
In the next section, we briefly review related work.
In Section 3, we explain a datamodel and a query
language that we use as the base of our develop-
ment. Then, in Secion 4, we discuss the composite
object detection, and introduce new constructs to
controll the range of wild cards. Finally, Section 5
is the conclusion.

2 Related Work

There is a couple of researches on finding structures
in semistructured data. In [10, 9], they propose a
method to infer the approximate typing of every
nodes in semistructured data. In their researches,
for each node, they infer its type in accordance with
the type of the nodes to which that object referrs
and the labels of those references, and in the same
way, the type of the nodes referring to it and the
labels of those references. Their goal is to find types
in data, i.e. classes of nodes with similar structure.
On the other hand, what we want to do in this
research is to partition a database graph into sub-
graphs representing independent logical data units,
i.e. composite objects corresponding to real-world
entities. Therefore, these two researches and our
research focus on the extraction of different kind
of schema information out of semistructured data.
The information on types of each node, however,
can help the detection of composite objects. We
will explain how the type information can help the
detection of composite objects later in this paper.

[13] is also focusing on finding structure in semi-
structured data. In that paper, they try to iden-
tify nodes that should be regarded as instances of
classes. Their approach is to regard every labels fol-
lowed by primitive values as attribute names, and
to regard every nodes followed by attribute names

as instances of classes. By that method, the node
referring to the nodes “Matthew” and “Broderick”
in Figure 1 is regarded as an instance of a class
because that node is regarded as referring to those
primitive values through two attributes named first
and last. What we want to find in this research
is, however, not nodes that may be instances of
classes but nodes that seem to be the roots of com-
posite objects. In our sense, the node referring to
“Matthew” and “Broderick” is exclusively posessed
by an actor entry, and just a substructure of a
composite object representing an actor entity.

There is also a couple of researches on finding
structures in hypertext data. In [3], they propose
a framework to provide users with an abstracted
overview of hypertext by aggregating strongly re-
lated nodes. In their approach, they regard a set of
strongly connected nodes, such as nodes in bicon-
nected subgraphs, as composing a logical data unit.
It is because the data unit they want to find is sets
of strongly related nodes, and in hypertext data,
strongly related nodes tend to be strongly con-
nected by mutual references or cyclyc links. On the
other hand, the data unit we want to find is com-
posite objects. Although composite objects are,
in some sense, also strongly related nodes, nodes
in one composite object in semistructured data do
not seem to be always strongly connected in the
sense of biconnectivity and so on. Exclusiveness of
references seems more appropriate for our purpose.
In this way, we use a compltely different method to
detect a different kind of structure in the data.

Another research on finding structure in hyper-
text data is our previous research [14]. In that
research, we develop a method to parition a hy-
pertext data into independent subtopic structures.
Because the data structure we want to find in that
research is subtopic structures in hypertext data,
we use similarity of the contents of nodes in order
to detect them. Therefore, the kind of structures
to find and the method to detect those strucutres
are completely different from this research.

[6] is discussing the extraction of information
on individual real-world entities, such as persons
or companies, out of semistructured data. Their
purpose is to automatically gather information on
each person or company out of heterogeneous mul-
tiple resources. Therefore, their purpose is different
from our purpose in this research. One basic as-
sumption is, however, common to both researhces.
Both they and we consider that the typical queries
issued on semistructured data are entiti-based. For
example, the query “list the titles of all movies
featuring an actor named Carrey” discussed above
is certainly based on the concept of “movie” entities
and “actor” entities.

a b

c

Figure 2: An Example of A Tree

a

b

c
d

Figure 3: An Example of A Graph

3 Basic Model

In this research, we use the eadge-labeld tree data-
model and UnQL, which are a data model and its
query language for semistructured data proposed
in [5], as the base model for the development. In
this section, we breifly explain them.

In this datamodel, semistructured data is rep-
resented in a form of a directed tree with labels
on its edges. The syntax for the construction of
edge-labeled trees is defined as below2 :

tree ::= {label ⇒ tree, . . . , label ⇒ tree} |
tree−marker

label ::= int | string | . . . | symbol

tree is defined as either a set of pairs of a label
and a tree ({label ⇒ tree, . . . , label ⇒ tree} in
the definition above) or a tree-marker, which is
explained later. label can be any values of sup-
ported primitive types, such as integer, string, and
symbol. By using this syntax, a tree in Figure 2,
for example, is described as below:

{a⇒{}, b⇒{c⇒{}}}

Note that leaves of a tree are represented by empty
trees, i.e. empty sets. In this model, primitive
values are represented by labels of edges followed
by no edges beneath them. From now on, we use a
syntax sugar, and simply write a for a⇒{}. We also
omit braces ({ }) for singleton sets. For example,
we write as below instead of the description above:

{a, b⇒c}

This model can also describe cyclic structure using
tree-markers and one more construct, letrec. For
example, the rooted graph shown in Figure 3 is
described as below:

letrec X={a, b⇒Y}, Y={c, d⇒X} in X end

2 This definition is slightly different from the one in [5].

’Godzilla’ ’The Cable Guy’

Figure 5: The Result of the Example Query

This definition define two trees X and Y which
mutually refer to one another, and define the root
node of the tree X, i.e. a node with outgoing edges
a and b in Figure 3, as the root.

Figure 4 is an example database represented
in the edge-labeled tree model. This database is
a movie database, and it contains two kinds of
entities, movies and actors. Movie entries have
attributes title, year, country, and cast, and actor
entries have name, sex, and appear. This data can
be described by the syntax above as below:

letrec
X = {movie⇒M1, movie⇒M2,

actor⇒A1, actor⇒A2}
M1 = {title⇒’Godzilla’, year⇒1998,

country⇒’U.S.A.’, cast⇒A2},
M2 = {title⇒’The Cable Guy’,

year⇒1996, country⇒’U.S.A.’,
cast⇒{leadingActor⇒A1,

actor⇒A2}},
A1 = {name⇒’Jim Carrey’, sex⇒male,

appear⇒M2},
A2 = {name⇒{first⇒’Matthew’,

last⇒Broderick’},
sex⇒male,
appear⇒M1, appear⇒M2}

in X end

Next, we explain the query language by showing
intuitive examples rather than by formally defining
it. On the database above, we can issue queries like
below:

select t
where movie⇒title⇒ \t ← DB

The construct . . .← DB in where clause produces
the paths emanating from the root of the database
graph bound to the name DB. Here, we assume the
database shown above is bound to the name DB.
Then, each path is compared with the pattern at
the left hand of ←. For each path that matches
with the pattern, the variables newly introduced in
the pattern are bound, and select clause is evalu-
ated. Newly introduced variables are marked with
\. The result of the query is the union of the result
of all the evaluation of select clause. In the query
above, t is bound to a tree under an edge labeled
title, and the result of each evaluation of select
clause is a tree, i.e. a set of edges, and therefore,
the result of the query is the union of trees, which

name sex

’Jim
 Carrey’

male

title

’Godzilla’ 1998 ’U.S.A’

year contry name sex

’Matthew’

male

’Broderick’

first last

title

’The Cable
 Guy’ 1996 ’U.S.A’

year
contry

cast

cast
appear appear appear

leadingActoractor

movieactor

movie actor

Figure 4: An Example Movie Database

is also a tree. The result of the query above is a
tree shown in Figure 5.

If we want to get not the tree in Figure 5 but a
plain set of title strings, the query below does for
it:

select l
where movie⇒title⇒ \l ⇒ {} ← DB

While the variable t at the end of the path expres-
sion in the previous query matches with a whole
subtree under the path, the variable l in this query
matches with the label, which must be a title of a
movie, because it is followed by ⇒ {}. The result
of this query is {’Godzilla’, ’The Cable Guy’}.

The query “list the titles of all movies featuring
an actor named Carrey,” discussed in the introduc-
tion, is described as below3 :

select l1
where movie⇒ {title⇒ \l1 ⇒ {},

cast⇒[ˆappear⇒]*\l2 ⇒ {}}
← DB,

substring(l2, ’Carrey’)

As explained before, [ˆappear⇒]* is a regular ex-
pression that matches with any paths not including
a label appear. Note that ⇒ {} following \l1 and
\l2 are needed so that l1 and l2 are bound not to a
tree but to a label as explained above.

4 New Constructs to Control Wild
Cards

Now in this section, we introduce new constructs
to control the range of wild cards. First, we ex-
plain the method to detect composite objects in
semistructured data.

3 The syntax for regular expressions used here is slightly
different from the one in [5]

4.1 Composite Object Detection

As mentioned in the introduction, we consider con-
nected subgraphs consisting of only exclusive refer-
ences to be composite objects.

Definition 1 A node is a root of a composite ob-
ject iff there are multiple nodes referring to it. Oth-
erwise, that node is possessed by its only parent
object. The root node of the database is the excep-
tion, and it is always the root of a composite object.
Then, a composite object is a subgraph 〈V,E〉 that
can be extracted by the following steps:

1. let 〈V,E〉 be 〈{n}, ∅〉 where n is a node that
is determined as a root of a composite object,
and

2. repeatedly add to V nodes possessed by any
node in V , and to E edges between nodes in
V .

This fairly simple approach using the exclusiveness
of references works well with the example database
above. By this method, the example database is
successfully partitioned into 5 composite objects:
2 movies, 2 actors, and the root node.

In some cases, however, this simple method may
not be perfect. For example, suppose that the
root node in the example data has only links to
movie entries, and actor entries can be accessed
only through related movie entries. Then, if some
actor appears in only one movie stored in this data-
base, that actor is regarded as exclusively possessed
by that movie and as a part of the composite ob-
ject representing that movie. In the example data
above, the actor “Jim Carrey” is related to only
one movie, and therefore, if not for actor edges from
the root node, the entry of “Jim Carrey” would be
regarded as a part of larger composite objects.

One approach to solve this problem is to use
typing techniques proposed in [9]. Before determin-
ing composite objects, we first detect approximated
types of all nodes by their techniques, and change
the first sentence of the definition of composite ob-
jects above as follows:

Definition 2 A node n is a root of a composite
object iff there is a node n′ of the same type as n
and there are multiple nodes referring to n′. . . .

If we can detect that the nodes rooting each actor
entry have the same approximated type, i.e. if we
can detect that those nodes share similar struc-
ture, then we can determine each actor entry as
a composite object as long as there is at least one
actor appearing more than tow movies stored in
the database.

This approach depends on the accuracy of the
approximated typing. Approximated typing has
a parameter on the allowable heterogeneity in a
single type. If we allow no heterogeneity in one
type, all nodes of the same type have exactly the
same structure, but in worst case, we have as many
types as nodes. On the other hand, if we allow high
heterogeneity, the number of types is decreased,
but the sets of nodes of the same types are more
heterogeneous. In the detection of composite ob-
jects, if we use a result of approximated typing with
lower allowance, the precision rate of composite
object detection will be higher but the recall rate
will be lower. On the contrary, if we use a result
of approximated typing with higher allowance, the
recall rate will be higher but the precision rate will
be lower.

4.2 Constructs for Restricted Edge Match-
ing

Now we introduce a new construct 〈label ⇒ 〉◦
to restrict the matching of edges. The pattern
〈label ⇒ 〉◦ matches only with edges that has la-
bel label, and in addition, that does not across a
boarder of a composite object. In other words,
〈label ⇒ 〉◦ matches only with composite links.
This construct is, for example, used in the following
way:

select l
where movie⇒{title⇒’Godzilla’,

[〈 ⇒〉◦]*year⇒ \l⇒ {}} ← DB

This query is to retrieve the value of year attribute
of the movie “Godzilla.” 〈 ⇒〉◦ matches with com-
posite links with any labels. Therefore, the pattern
movie⇒[〈 ⇒〉◦]*year⇒ matches with paths start-
ing with the label movie, going through arbitrary
number of composite links, and ending at an edge
with the label year. By restricting the intermediate
edges to be within a singe composite object, this
query tries to find a year edge at some unknown

place but inside the movie entry for “Godzilla.”
(In the example database above, all year edges are
immediately under movie edges, but the users may
be uncertain of it, or there may actually be movie
entries in which year edges exist at deeper place be-
cause the data is semistructured data.) When this
query is applied to the example database above, it
correctly returns a set {1998}.

For the symmetricity, we also introduce a con-
struct 〈label ⇒〉×, which explicitly requires non-
composite links. We actually sometime need such a
construct. For example, consider the query below:

select l where
movie⇒
{title⇒’Godzilla’,
[〈 ⇒〉◦]*〈 ⇒〉×[〈 ⇒〉◦]*name⇒ \l ⇒ {}}
← DB

This query tries to retreive names of people related
to the movie titled “Godzilla.” 〈 ⇒〉× is used be-
cause there may be name edges inside the movie
entry itself.

By using these new constructs, the query “list
the titles of all movies featuring an actor named
Carrey,” discussed in the introduction is now can
be specified as follows:

select l1 where
movie⇒
{title⇒ \l1 ⇒ {},
[〈cast⇒〉×[〈 ⇒〉◦]* |
〈cast⇒〉◦[〈 ⇒〉◦]*〈 ⇒〉×[〈 ⇒〉◦]*]\l2 ⇒ {}}
← DB,

substring(l2, ’Carrey’)

[. . . | . . .] is a disjunction pattern that specifies ei-
ther side of | should be matched. We define the
semantics of a query including a disjunction pat-
tern by the union of two queries corresponding to
two alternative patterns. Therefore, each alterna-
tive pattern has its own scopf of variables, and
in select clause or at other places in where clause,
variables that are introduced in the both alterna-
tive patters can be used, while variables that are
introduced in only one of alternatives cannot be
used. The pattern 〈cast⇒〉×[〈 ⇒〉◦]* at the left
sied of | matches with the paths starting with a
non-composite link labeled cast, and going through
arbitrary number of composite links. On the other
hand, the pattern 〈cast⇒〉◦[〈 ⇒〉◦]*〈 ⇒〉×[〈 ⇒〉◦]*
at the right side of | matches with paths starting
with a composite cast link, going through arbitrary
number of edges including only one non-composite
link. Thus, the whole expression [. . . | . . .] matches
with paths starting with a cast edge, having arbi-
trary length, and including only one non-composite
link somewhere in it. We need two alternative
patterns because it is not certain whether a cast
link is a composite link or a non-composite link.

By these restrictions in the path expressions, when
this query is issued on the example database in
Figure 4, it correctly returns {’The Cable Guy’}.
It does not include “Godzilla” in the result.

As shown in the examples above, with those
new costructs we can use wild cards in a more
controlled way. The examples above, however, also
shows that the pattern specification would be quite
complicated. To make query specifications simpler
and easier to write, we introduce one macro ex-
pression. The typical way of the use of those new
constructs is the one in the last query: “this pattern
matches only with paths including this number of
composite links and this number of non-composite
links.” Therefore, we introduce a macro that di-
rectly specifies that kind of condition. A macro
expression 〈path pattern〉◦n1

×n2
means a path pattern

that matches only with paths including n1 com-
posite links and n2 non-composite links. We can
omit either n1 or n2, in which case the path may
include any number of links of that type. We do not
formally define the translation of this macro expres-
sion in this paper because it is very complicated,
but it is possible to define an automatic translation.
By using this macro, the previous query can be
rewritten as follows:

select l1
where movie⇒ {title⇒ \l1 ⇒ {},

〈cast⇒[⇒]*〉◦×1\l2 ⇒ {}}
← DB,

substring(l2, ’Carrey’)

This specification is translated into the previous
query before execution and returns the same result.

In the same way, the query “retreive names of
people related to the movie “Godzilla” shown above
can be rewritten as follows:

select l
where movie⇒{title⇒’Godzilla’⇒ {},

〈[⇒]*〉◦×1name⇒ \l⇒ {}}
← DB

4.3 Entity-Based Query in Semistrucutred
Data

As illustrated in the previous subsection, our con-
structs that explicitly require compsite links or non-
composite links are useful especially when they are
used in combination with wild cards. They can
be used to controll the range of wild cards, and
it makes wild cards safer and more usable than
usual wild cards that match with paths of arbi-
trary length. Being able to use wild cards more
often implies we can specify successful queries with
less knowledge on the schema. In this subsection,
we demonstrate a style of query specifications that
maximize the benefit of wild cards, which we call
entity-based query style.

Although the example queries shown above are
queries on semistructured data and does not as-
sume the users’ complete knowledge on the schema,
they still assume some knowledge on it. For ex-
ample, the first query retrieving the value of year
attribute is assuming that a movie edge appears
immediately under the root and a title edge appears
immediately under movie. We, however, need not
assume them at all if we take the full advantage of
wild cards. That query can be rewritten as below:

select l
where [⇒]*{[〈 ⇒〉◦]*’Godzilla’,

[〈 ⇒〉◦]*year⇒ \l ⇒ {}} ← DB

This query assumes only a very little knowledge
on the schema. To see it, suppose we remove the
restriction on link types in the query above. If
you remove all those resticrtions, this query almost
does not make sense. That query will return all the
labels appearing under the label year if there is at
least one label ’Godzilla’ in the database, or other-
wise will return an empty set. With those restric-
tions by our new constructs, however, this query
correctly returns the production year of “Godzilla.”

In the same way, if we want to take full ad-
vantage of wild careds, the query “list the titles
of all movies featuring an actor named Carrey,” is
rewritten as below:

select l1
where [⇒]*{[〈 ⇒〉◦]*title⇒ \l1 ⇒ {},

[〈 ⇒〉◦]*〈cast⇒[⇒]*〉◦×1\l2 ⇒ {}}
← DB,

substring(l2, ’Carrey’)

Part of these queries have a common style: they
try to find entities including all the required items.
This style of queries using as little knowledge on the
schema as possible and focusing on the concept of
entities seems a typical query style in many applica-
tions. We call this style of query entity-based query
style, and in order to promote this style of query,
we introduce a macro expression for it. Instead
of writing [⇒]*{[〈 ⇒〉◦]*t1, . . . , [〈 ⇒〉◦]*tn}, we
write E{t1, . . . , tn}. By using these macros, two
queries above are rewritten as follows:

select l
where E{’Godzilla’, year⇒ \l⇒ {}} ← DB

and

select l1
where E{title⇒ \l1 ⇒ {},

〈cast⇒[⇒]*〉◦×1\l2 ⇒ {}}
← DB,

substring(l2, ’Carrey’)

Although the second one is still a little compli-
cated, the first one became greatly easier to read.

We show a couple of more examples demonstrat-
ing entity-based style queries. The query below
returns the list of titles of all movies producted in
U.S.A. in 1996:

select l
where E{title⇒ \l⇒ {}, 1996⇒ {},

“U.S.A.”⇒ {}} ← DB

Although in the example database above, year and
country are always immediately under movie, there
may be entries or another database where they
are not. The query above is assuming as little
knowledge as possible, and therefore, very portable.

The query below returns all the labels of ter-
minating edges within the entry of “Jim Carrey,”
which must be values of primitive attributes in that
entry:

select l
where E{\l⇒ {}, “Jim Carrey”⇒ {}} ← DB

When this query is applied to the example database
above, it returns a set {“Jim Carrey”, male}. This
query can be used to list all the primitive values
describing the actor “Jim Carrey.” On the other
hand, the query below is also interesting:

select l
where E{\l⇒ \t, “Jim Carrey”⇒ {}} ← DB,

t 6= ∅

This query returns {name, sex}. This can be re-
garded as answering what kind of information are
known about “Jim Carrey.”

5 Conclusion

In this paper, we propose a query language for
semistructured data. Our language supports path
expressions including wlid cards, and in addition,
edge expressions that match only with composite
links or non-composite links can be used in path
expressions. By using these expressions in com-
bination with wild cards, we can use wild cards
in a more resticted and safer way. For example,
by using these expressions and wild cards, we can
specify a path expression that matches paths of
arbitrary length but not extending to other entities.
We showed examples demonstrating how those con-
trolled wild cards are useful, and finally propose a
style of query specification that take full advantage
of them, which we call entity-based query style. As
a method to distinguish composite links and non-
composite links in semistructured data, we propose
a method that uses the exclusiveness of references.

Our method of entity detection depends on the
way of data organization of the given data. In this
research, we assumed heirarchical style of data or-
ganization of semistructured data, where databases
are consisting of subtrees representing real-world

entities, and references between them. In many ap-
plications, this assumption seems correct. In some
applications, however, databases have completely
different structures, for which our approach is not
useful. An example of such structures is doubly-
linked lists, which are often used in hypertext doc-
ument data. In hypertext document data, it is
often the case that a single document is divided into
its subparts, such as sections, and those subparts
are arranged in a form of doubly-linked lists. In
such a situation, although those subparts can be
regarded as composing a single logical data unit,
i.e. one document, our method using exlusiveness
of references would determine that each subpart is
an independent composite object because they all
have multiple incoming links, one from the previous
section, and one from the next section.

Even in such a situation, however, if we can cor-
rectly detect logical data units in the data, our new
constructs and entity-based style of queries must
be useful. Therefore, one important future work
is to develop other methods of composite object
detection for those kinds of data structures.

In addition, even in the applications where data-
bases are basically consist of subtrees correspond-
ing to entities and references between them, our
method of entity detection is not, of course, perfect.
Because the usefulness of our new constructs for
path expressions and entity-based query style is
crucially depend on the accuracy of entity detec-
tion, we must also improve techniques of entity
detection even for those kind of data in future work.

Acknowledgments

We would like to thank Katsumi Tanaka for his
continuous support to our research. This research
is partly supported by the Japanese Ministry of
Education Grant-in-Aid for Scientific Research on
Priority Area (A): “Advanced databases,” area no.
275 (08244103). This research is also supported
in part by “Research for the Future” Program of
Japan Society for the Promotion of Science under
the Project “Advanced Multimedia Contents Pro-
cessing” (Project No. JSPS-RFTF97P00501).

References

[1] Serge Abiteboul. Querying semi-structured
data. In Proc. of ICDT, volume 1186 of LNCS,
pages 1–18. Springer-Verlag, Jan. 1997.

[2] Serge Abiteboul, Dallan Quass, Jason Mc-
Hugh, Jennifer Widom, and Janet L. Wiener.
The Lorel query language for semistructured
data. International Journal of Digital Li-
braries, 1(1):68–88, Apr. 1997.

[3] Rodrigo A. Botafogo and Ben Shneiderman.
Identifying aggregates in hypertext structures.
In Proc. of Hypertext, pages 63–74, Dec. 1991.

[4] Peter Buneman. Semistructured data. In Proc.
of ACM PODS, pages 117–121, May 1997.

[5] Peter Buneman, Susan Davidson, Gerd Hille-
brand, and Dan Suciu. A query language and
optimization techniques for unstructured data.
In Proc. of ACM SIGMOD, pages 505–516,
Jun. 1996.

[6] Scott Huffman and Catherine Baudin. Notes
explorer: Entity-based retreival in shared,
semi-structured information spaces. In Proc.
of ACM CIKM, pages 99–106, Nov. 1996.

[7] Won Kim, Elisa Bertino, and Jorge F. Garza.
Composite objects revisited. In Proc. of ACM
SIGMOD, pages 337–347, Jun. 1989.

[8] Alberto O. Mendelzon and Tova Milo. Formal
models of Web queries. In Proc. of ACM
PODS, pages 134–143, May 1997.

[9] Svetlozar Nestorov, Serge Abiteboul, and
Rajeev Motwani. Extracting schema from
semistructured data. In Proc. of ACM SIG-
MOD, pages 295–306, Jun. 1998.

[10] Svetlozar Nestrov, Serge Abiteboul, and
Rajeev Motwani. Inferring structure in
semistructured data. In Proc. of Work-
shop on Management of Semistructured Data
(in Conjunction with PODS/SIGMOD), May
1997. http://www.research.att.com/˜suciu/
workshop-papers.html.

[11] Yannis Papakonstantinou, Serge Abiteboul,
and Hector Garcia-Molina. Object fusion in
mediator systems. In Proc. of VLDB, pages
413–424, Sep. 1996.

[12] Yannis Papakonstantinou, Hector Garcia-
Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. In
Proc. of IEEE ICDE, pages 251–260, 1995.

[13] Dong-Yal Seo, Dong-Ha Lee, Kyung-Mee Lee,
and Jeon-Young Lee. Discovery of schema
information from a forest of selectively la-
beled ordered trees. In Proc. of Work-
shop on Management of Semistructured Data
(in Conjunction with PODS/SIGMOD), May
1997. http://www.research.att.com/˜suciu/
workshop-papers.html.

[14] Keishi Tajima, Yoshiaki Mizuuchi, Masatsugu
Kitagawa, and Katsumi Tanaka. Cut as a
querying unit for WWW, Netnews, and E-
mail. In Proc. of ACM Hypertext, pages 235–
244, Jun. 1998.

