A Cache-based Approach to Dynamic Switching between Different Dataflows in Crowdsourcing

Yusuke Suzuki⁺, Masaki Matsubara⁺, Keishi Tajima[‡], Toshiyuki Amagasa⁺, and Atsuyuki Morishima⁺

- 1. 【Background】 Crowdsourcing sometimes makes
 - 2. dataflow change halfway, but it costs a lot of money.
 - 3. 【Related Work】 With the method using task result caches,
 - 4. it cannot cope with dataflow change.
 - 5. **(Our Approach)** We propose the method to use caches
 - 6. coping with changing dataflows.
 - 7. 【Simulation】 Our simulation results showed that it is
 - 8. possible to identify the best point to minimize the total cost.

Crowdsourcing Characteristics

Because of slow processing by human, it requires time and monetary costs.

Background(2/4) : Changing Dataflows

Because completing all tasks takes long time, we may want to change the dataflow halfway due to various factors.

Background(3/4):

Changing dataflows in crowdsourcing are difficult

Switching query plans at appropriate timing.

(Eddies[1] et al.)

→ Since it is necessary to develop a mechanism for each type of operator, such a mechanism cannot be generalized for crowdsourcing settings where we have variety of tasks

Propose a rerunning method with the task result cache. \rightarrow It is reasonable because the cost of the computer involved in using caches is low compared to the cost of processing tasks in crowdsourcing.

[1] Ron Avnur and Joseph M Hellerstein. Eddies: Continuously adaptive query processing. In ACM sigmod record, Vol. 29, pp. 261–272. ACM, 2000.

Background(4/4) : It takes extra money cost to redo the task

Changing the dataflow makes it impossible to use the result of the task performed halfway and the cost for that is

Task3

The purpose of our research

To reduce the total monetary cost in the dataflow change

process

- Y. [Background] Crowdsourcing sometimes makes
 - 2. dataflow change halfway, but it costs a lot of money.
 - 3. **[Related Work]** With the method using task result caches,
 - 4. it cannot cope with dataflow change.
 - 5. **(**Our approach**)** We propose the method to use caches
 - 6. coping with changing dataflows.
 - 7. 【Simulation】 Our simulation results showed that it is
 - 8. possible to identify the best point to minimize the total cost.

Existing Method : Rerunning method with the task result caches [2]

It can resume halfway when crashing

[2] G. Little et al. "Turkit: human computation algorithms on mechanical turk". In: UIST. 2010.

8

Existing Method : Cannot use caches after changing the dataflow[2]

Because caches does not correspond to the task in new

[2] G. Little et al. "Turkit: human computation algorithms on mechanical turk". In: UIST. 2010.

- **Y**. **[**Background **]** Crowdsourcing sometimes makes
 - 2. dataflow change halfway, but it costs a lot of money.
- **√**. 【Related Work】 With the method using task result caches,
 - 4. it cannot cope with dataflow change.
 - 5. **[Our Approach]** We propose the method to use caches
 - 6. coping with changing dataflows.
 - 7. 【Simulation】 Our simulation results showed that it is
 - 8. possible to identify the best point to minimize the total cost.

Combining caches

Combine cache from task input and task output

Processing data without corresponding cache

In the old dataflow,

only data with no corresponding cache will be processed.

Process the dangling result in the old dataflow

Reduce wasted task results by executing additional tasks

on dangling results.

Relationship between dangling results and costs

It is not enough to simply process dangling results to the end

Compare the costs and process with the cheaper dataflow

Cost estimation for each dataflow

Monetary cost for the old dataflow

Monetary cost for the new dataflow

Input	Monetary cost for the new dataflow
Konnichiwa	0.10
Arigatou	0.10
Sayounara	0.10

- **Y**. **[**Background **]** Crowdsourcing sometimes makes
 - 2. dataflow change halfway, but it costs a lot of money.
- **•**. 【Related Work】 With the method using task result caches,
 - 4. it cannot cope with dataflow change.
 - 5 [Our Approach] We propose the method to use caches
 - 6. coping with changing dataflows.
 - 7. [Simulation] Our simulation results showed that it is
 - 8. possible to identify the best point to minimize the total cost.

Simulation purpose and Results

Purpose: To show relationship between data processing cost and cost before change

Results:

- it is possible to identify the best point to minimize the total cost.
- There are no obvious solutions.

The number of the data processed in the old dataflow

Summary

- We proposed the method to use caches corresponding to changing dataflows.
- Our simulation showed that it is possible to identify the best point to minimize the total cost.
- I explored the dataflow including join operation. (poster)

Future Work

- Since cost estimation is costly for calculation,
- we will consider a method to reduce calculation cost.