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A Query Model to Synthesize Answer Intervals
from Indexed Video Units

Sujeet Pradhan, Member, IEEE , Keishi Tajima, and Katsumi Tanaka, Member, IEEE

Abstract—While a query result in a traditional database
is a subset of the database, in a video database, it is a
set of subintervals extracted from the raw video sequence.
It is very hard, if not impossible, to predetermine all the
queries that will be issued in future, and all the subinter-
vals that will become necessary to answer them. As a result,
conventional query frameworks are not applicable to video
databases. In this paper, we propose a new video query
model that computes query results by dynamically synthe-
sizing needed subintervals from fragmentary indexed inter-
vals in the database. We introduce new interval operations
required for that computation. We also propose methods
to compute relative relevance of synthesized intervals to a
given query. A query result is a list of synthesized intervals
sorted in the order of their degree of relevance.

Index Terms—video database, video retrieval, continuous
data, indexing units, interval query, interval operations

I. Introduction

CONTINUITY is one of the most distinctive features
of video data that makes it different from other kinds

of data. A video data is a seamless continuous sequence
of frames. By this nature of video data, any arbitrary
subsequences of these frames may be meaningful units for
indexing as well as for querying. However, there are prac-
tical difficulties in identifying all such units, which gener-
ally causes indexing to be limited to a certain number of
units only. Traditional frameworks for query processing
thus cannot be applied to video databases. A traditional
database storing non-continuous data, in general, is a set
of discrete data. An answer to a query on such a database
is a subset of the data that satisfies the query conditions.
A video database, on the other hand, is a set of video in-
tervals, i.e. a set of continuous sequences. An answer to
a query on a video database, in general, is a set of only
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certain portions of those continuous sequences.
Generally, there are two different approaches to parsing

raw video data into smaller units for indexing. Indexing
schemes which rely largely on automatic parsing decom-
poses the raw video data into automatically detected shots
[4], [29]. On the other hand, works by [8], [18], [27], which
are based on manual annotation, choose arbitrary video in-
tervals defined by so-called semantic boundaries as index-
ing units. In either of these approaches, the problem that
end-users often face is that the intervals they are hoping
to find may not have been defined as answer units in the
database. Automatically detected shots may not be ap-
propriate units for answering a query. On the other hand,
defining all semantic boundaries and having all meaning-
ful units ready in the database manually can be hardly
achieved. It is because there is no common consensus on
what semantic boundaries are. As a result, what is mean-
ingful unit to an annotator may not be meaningful to the
user who issues the query. Therefore, manual indexing is
labor intensive and yet may never be complete. All these
things suggest that there is bound to be discrepancies in
granularity between the indexed units and the intervals to
be retrieved.
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Fig. 1. Various techniques for keyword extraction

In order to solve this basic problem, which is highly
prevalent in video databases, we propose a query frame-
work where query results are dynamically synthesized from
the video units defined in the database. In our framework,
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we assume that keyword information are associated with
fragmentary video units in the database. It should be
noted here that such information can be not only added
manually but also can be extracted automatically (see
Fig. 1). For example, speech recognizers can automatically
transcribe video soundtracks [6]. The current state-of-art
also allows one to automatically recognize text captions.
Some video data even have scenarios or textual descrip-
tion added during the production time. Natural language
processing technique can automatically transform all such
textual information into a set of descriptive keywords [26].
Our framework allows users to formulate queries declar-

atively by listing a keywords with some quantifiers. The
queries thus specified are transformed into algebraic ex-
pressions which will include the query keywords and the
respective interval operators. Each query keyword is
matched with the keywords associated with the indexed
video units to produce intermediate result sets. Final an-
swer intervals are then composed by performing interval
operations on the sets of matched video units. Since such a
set of answers may contain plenty of intervals, answers will
be ranked in the order of relative relevance to the query.
The main goal of our research is to design a query mech-

anism which will enable us to dynamically compute answer
intervals that exist in the raw video data, even though such
intervals are not indexed as answer units in the database.
In order to achieve this goal, we
1. define new interval operations required to compute
answers,

2. provide a framework for query formulation in which
ambiguity in query semantics can be avoided with the
help of quantified keywords, and

3. present methodologies to rank answers.
The rest of the paper is organized as follows: In Sec-

tion II, we present some motivating examples behind our
work. Section III presents comparisons of our work with
other related work. Some basic definitions of indexed video
units and video database are presented in Section IV.
In Section V, we explain our query mechanism in de-
tail. First, we formally define the syntax of our declar-
ative query. We then define various interval operations,
and show how our declarative queries are transformed into
expressions with those interval operations to compute the
query result. In Section VI, we discuss a couple of methods
to calculate the degree of relevance so that answers can be
ranked and presented to users in order. Query approxima-
tion is presented in Section VII. Finally, in Section VIII
we summarize the main contributions of this paper and
present some prospects for our further research.

II. Motivation

In the past, query models for video data have been de-
veloped with particular annotation models [8], [9], [18],
[27] in consideration. The usual approach is to assign at-
tributes or descriptions to arbitrary video units and then
define several interval operations such as interval union,
interval intersection, and interval concatenation in order
to compute video intervals as query results. The opera-

tions proposed in those research works, however, cannot
always produce appropriate intervals that users intend to
find in the first place.
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Fig. 2. What does a user expect?

For example, consider a query “retrieve video intervals
that show a dog running after a man.” In conventional ap-
proaches, a query result is computed by simply taking the
intersection between those video units with an attribute
value ‘man’ and those with an attribute value ‘dog’. An
actual scene of ‘a dog running after a man’, however, usu-
ally involve lots of camera movements, zooming, and pan-
ning. It rarely happens that every frame in that scene
contains both a ‘dog’ and a ‘man’ (see Fig. 2). Some of
them may show only either of them, and there may be even
frames showing none of them but the road between them.
Therefore, the user who issues this query in the first place
does not necessarily expects a video interval that shows
‘dog’ and ‘man’ in every frame throughout its play. Such
an informally phrased query thus can be interpreted in a
number of ways:

• Does it mean that the user wishes to find contiguous
intervals consisting of frames showing either a dog or
a man? (See Fig. 2 — Interval 1)

• Or does it mean that the user wants to find intervals
which start with a frame in which either a man or a
dog first appears and end with the final frame in which
either one of them emerges? (See Fig. 2 — Interval 2)

• Or does it mean that the user is focusing on the dog,
and his intention may be intervals with a dog in ev-
ery frame and a man in some frames? (See Fig. 2 —
Interval 3)

Producing appropriate intervals from the actual video
data for even what seems to be such a simple query asks
for new interval operations. Our goal is to develop such
a set of operations that can compute answers to queries
on a video database. For example, in order to generate an
answer such as Interval 2 (See Fig. 2), we define a novel
operation called extended union. It should be noted here
that the usual union operation can produce the Interval 1
but not the Interval 2.
Specifying a query using those operations on video in-

tervals, however, is not what an end-user would like to do.
We therefore define a framework where end-users can for-
mulate their queries by simply specifying a list of keywords
with some quantifiers. This list of keywords with quanti-
fiers declaratively specifies the condition for the query re-
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sult. For example, the Interval 3 can be obtained by speci-
fying the query as ((dog)∀∧(man)∃). Our query mechanism
translates the keywords into appropriate query expressions
composed of our interval operations.
One problem in applying such a query framework is the

existence of noise or the frames that cannot be matched
with a query. For example, suppose we want to find a
contiguous interval consisting of frames showing either a
man or a dog. In the actual video, however, as we men-
tioned above, there may be a short sequence of frames
showing only the road between them. If we strictly inter-
pret the semantics of the query, an interval that includes
those frames inside it, is not considered contiguous, and
therefore will not be included in the query result. In prac-
tical applications of video databases, however, such a strict
interpretation of the query semantics makes little sense.

Interval1 Interval3Interval2

Raw Video Data

man

dog

{                                                                                                  }
{                                                                                                  }

Fig. 3. Three unequal video interval answers

Consider the video data shown in Fig. 3 where arbitrary
video units are indexed by the keywords ‘man’ and ‘dog’.
Suppose there are actually three different scenes of the dog
running after the man. Then for a query “retrieve video
intervals that show either a dog or a man”, if we follow
the strict semantics of the query, then it is clear that only
the first two video intervals can be taken as the definite
answer to this query. If, however, we relax the seman-
tics of the query, then many intervals can be considered as
possible answers. Intuitively, one can say that not all of
these answers will be equally important to the user. Con-
sidering the three most relevant intervals as shown in the
Fig. 3, one can intuitively say that the first video interval
is preferable to the second and the second is preferable to
the third one. However, such reasoning without any the-
oretical background is not sufficient to estimate the query
response. We need to develop these intuitive notions into
a consistent, useful methodology for query formulation,
query processing, estimating relevance among the answers,
and ranking output for presentation to a user.
Another problem that normally arises is from the dis-

crepancy between the user who submits the query and the
annotations that are actually stored in the database. For
this discrepancy, it is often the case in video databases
that there does not exist any answer intervals that exactly
match with a given query formula even though there may
be intervals that conceptually fulfill the users’ purpose. We
thus propose a query evaluation method based on approx-
imation. When a query is issued and the result would be
an empty set, the condition given in the query is relaxed

and reformulated.

III. Related Work

There is now growing interest in querying the large re-
sources of digital video data. Allen’s work on tempo-
ral intervals [1] laid the foundation for many researches
concerned with time intervals [14], [15]. He showed that
there are 13 distinct temporal relationships that can ex-
ist between two arbitrary time intervals. Video data
is also temporal although not in the traditional sense
[7]. Some researches on video databases have thus been
greatly influenced by Allen’s temporal model. In [14],
temporal-interval-based models have been presented for
time-dependent multimedia data such as video. Our work,
however, has mainly focussed on the operations for synthe-
sizing new intervals but not on the relationship between
given intervals. Therefore, our work and those work on
interval relationships are orthogonal. As we saw in the ex-
ample above, in any meaningful video interval, the same
keyword may emerge for an indefinite number of times in
no particular order. Some further investigation is required
in order to integrate the condition specifications based on
their temporal relationships and the interval operations
into one query language. This issue will be considered in
our future work.
Over the past few years, researchers around the world

have developed systems which are capable of providing
database support to video data [7], [9], [18], [27]. We re-
view some of them briefly below. It should be noted here
that none of the systems described below have defined op-
erations that can synthesize possible answer intervals to a
query from the existing video units.

A. OVID

Object Video Database (OVID) [18] is an instance-based
video database system. In OVID, an arbitrary set of
contiguous intervals can be defined as a meaningful en-
tity, which they call a video object. Inheritable and non-
inheritable attributes can be assigned to those video ob-
jects. Inheritable attributes are shared between objects on
the basis of interval-inclusion relationship between them.
The basic idea is to let video objects share inheritable at-
tributes with their parent video object and relieve some
burden of the manual annotation process.
Our objective is different from that of OVID. In OVID, a

special emphasis has been put on annotation model rather
than on query model. It also assumes that all meaningful
interval units are predefined manually and stored in the
database. However, as stated above, what is meaningful
to a person who annotates the video data may not nec-
essarily be meaningful to the one who issues the query.
Furthermore, the operations defined in OVID cannot com-
pute contiguous intervals if two input intervals are neither
overlapping nor adjacent.

B. Algebraic Video

Algebraic video data model [27] is based on stratification
approach [23]. Unlike simple stratification, however, in the
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algebraic video model, they can define the hierarchical re-
lationship between descriptions that are associated with
the same video data. Parent nodes in the hierarchy rep-
resent the context of their child nodes. By this hierarchy,
they can attach multiple views with different context to
the same video data.
Their work also focuses on an annotation model rather

than on a query model. Annotation should be done very
carefully in order to ensure that answers are available for
any kind of query. It also puts an extra burden on annota-
tors to define relationships between descriptions. Defining
all possible interval answers in advance in the indexing
scheme, however, is not our approach in the first place.

C. VideoSTAR

VideoSTAR [8] is another video database project devel-
oped at Norwegian Institute of Technology. A generic
model to support both the structural indexing and con-
tents indexing has been proposed. Various interval-based
and set-based operations have been defined as well. Three
different kinds of descriptions — basic, primary and sec-
ondary — based on the context in which they appear can
be associated with a video data. Video documents can
be composed from various sources of video data and only
those descriptions that are contextually related will be in-
herited by the newly composed documents. Their work is
also focussed more on building a perfect annotation model
for indexing which makes the system even more complex.
As far as the query processing is concerned, no operations
have been defined to compute contiguous intervals from
two non-contiguous and non-overlapping intervals.

D. VIQS

Video Query System of VIQS [9] also defines a SQL-type
of query language. It includes operations for determining
whether two intervals of video overlap each other. Other
operations include union, complement and intersection op-
erations. Set iteration operations such as FORALL and
FOREACH can also be performed. Users can provide pa-
rameters to choose whether to see a single frame, a frame
of certain length or the complete sequence of frames. The
answer presentation module is provided to merge different
video-segments that are retrieved as answers to a query.
This work also lacks the algebraic operations required for
our purpose.

E. Informedia

Informedia project [26] uses techniques such as image pro-
cessing, speech recognition, text recognition and language
understanding to automatically parse visual, audio and
textual information contained in video data. Video para-
graphs are the units that are returned as answers to any
query. Key frames are dynamically generated on the basis
of query terms for answer presentation. Full text informa-
tion retrieval (IR) system based on well-known technique
of tf/idf (term frequency/inverse document frequency) has
been used for keyword-based queries.

In an another IR-based approach, [22] has proposed an
interactive retrieval process of video and still images us-
ing term weighting, relevance feedback and result ranking.
Most of the studies that have been conducted in the field
of information retrieval are concerned with textual doc-
uments. Unlike textual documents, however, there is no
common consensus on basic indexing units for video docu-
ments in general. This is the main reason why IR models
cannot be directly adapted to video data. In video data-
bases, keywords can be associated with only fragmentary
video units, and that makes it necessary to dynamically
synthesize video intervals from those fragmentary intervals
to answer queries.

IV. Video Indexing

There are two general approaches to associate descriptive
information about the contents of video data — segmenta-
tion approach and stratification approach. The segmenta-
tion approach [13], [22], [24], [29] physically divides the raw
video data into shots, scenes etc. Annotation models based
on this approach are focussed specifically on the structural
information of video data. This approach is straightfor-
ward and query processing is rather easy. There, however,
have been many criticisms of this approach for its inflexi-
bility and inability to segment the contextual information
[18], [23], [27] contained in video data.
The stratification approach, on the other hand, is based

on a layered annotation representation model which seg-
ments contextual information of the video [23]. The basic
idea is not to segment video data but to segment descrip-
tions. Each description is called a stratum that refers to
a sequence of video frames. The strata may overlap or
totally encompass each other. There already exist many
annotation models based on this approach [18], [19], [27] .
Various information such as closed caption, the result

of speech recognition, and manual annotation can be com-
bined and used as the source of annotation information as
illustrated in Fig. 1. No matter whether such information
are extracted automatically or added manually, we believe,
they can be associated with only fragmentary video units.
However, these units may not be the ones what end-users
are hoping to retrieve. As a result, meaningful intervals,
which are not necessarily defined in the database, need to
be computed in demand with the help of available indexed
units. This will allow us to compute interval answers, that
may possibly exist in the raw video data, even though such
answer units are not indexed in the database.
Before we define and discuss our query mechanism, here

we define the model of video annotations and video data-
bases that we use as the base of our development. A video
database, in general, is a collection of raw video streams.
For the sake of simplicity, here we consider a single raw
video stream.

Definition 1: A video stream F is a nonempty finite
set of frames f1, f2, . . . , fn, which is a totally ordered set
with respect to < as f1 < f2 < . . . < fn.

Definition 2: If fs, fe ∈ F and fs < fe, then a video
interval I[fs, fe] over F is the set of frames {fk ∈ F | fs ≤
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fk ≤ fe}.
fs and fe of I[fs, fe] are the starting frame and the ending
frame, and they are denoted by start(I) and end(I) re-
spectively. A video interval is thus a stream of contiguous
frames and is uniquely defined by its start frame fs and
end frame fe. An interval is denoted by I[fs, fe] or simply
by I wherever [fs, fe] can be omitted. I(F ) denotes the
set of all intervals over F .

Definition 3: An interval I1 ∈ I(F ) is said to be
identical to another interval I2 ∈ I(F ), iff start(I1) =
start(I2) ∧ end(I1) = end(I2).
We denote I1 = I2 to denote I1 is identical to I2. We also
denote I1 �= I2 to denote I1 is not identical to I2.

Definition 4: An interval I ′ ∈ I(F ) is said to be sub-
interval of another interval I ∈ I(F ), if (start(I′) ≥
start(I) ∧ end(I ′) ≤ end(I)) ∧ (I ′ �= I).
We denote I ′ ⊂ I to denote I ′ is a sub-interval of I.
Now a video description database VD for a video F is

defined as a set of video descriptions for F and has the
following form:

VD = {(k1, I1), (k2, I2), . . . , (kn, In)}
where each (ki, Ii) is a unit video description for a video
F . Each k in a unit description is a single keyword and I
is an element of I(F ). Intuitively, here we denote (k, I) to
suggest that the information described by the keyword k
emerges everywhere throughout the video interval I[fs, fe],
that is:

(k, I) means ∀f ∈ I[fs, fe].(k emerges in f)

V. Query Mechanism

Querying a video database is different from querying a tra-
ditional database. The semantics of query mechanism in a
traditional database are obvious. Query conditions are de-
fined by using primitive predicates and boolean operations
(and, or, not), and the answer of the query is a set of
data items satisfying the given condition. Even when some
constructors are used for creating new data structure, they
are simply evaluated for all combinations of those selected
data items. It does not add any complexity to the phase
of data item selection. The answer of the query is thus
always uniquely defined, and no ranking is necessary be-
cause the data items in the answer are equally important.
However, this is not the case when we are dealing with
video database query processing. One particular reason is
that there may not exist any predefined units of video in-
tervals that can be directly returned as answers to a user.
As a result, the answers to a query need to be synthesized
dynamically using the fragmentary video units annotated
with the pieces of information. In some cases, however, no
intervals can be claimed as the best answer to a query. In
those cases, the best we can do is to return a set of inter-
vals which are likely to satisfy the users’ need. In such a
query result, all the intervals may not be equally relevant
since some intervals may satisfy the query condition more
closely than others. A ranking strategy thus must be ap-
plied in order to present the answers to a user in the best
possible manner.

Query Formulation
(in a declarative way)

a list of keywords with quantifiers

Query Transformation
(algebraic expressions)

keywords and interval operators

Answer Generation
(keywords matching and operations)

a set of intervals

Ranking
(calculation of relevance)

a list of ranked intervals

Fig. 4. A framework for our query mechanism

Our query mechanism can be summarized as shown in
the Fig. 4. Users formulate queries by listing a keywords
with quantifiers in a declarative way. The queries thus
specified are transformed into algebraic expressions. These
expressions will include the original keywords and the re-
spective interval operators which we are going to define
later in this paper. The keywords specified in the query
are matched with the keywords associated with the in-
dexed video units. Interval operations are performed on
the matched video units in order to generate answer in-
tervals. The answers thus computed are finally ranked for
presentation to the users.

A. Query Formulation

We assume that users are interested in retrieving contigu-
ous video intervals having some contextual meaning rather
than bits and pieces of frames, or concatenation of short
intervals collected from different parts of the video. We
also assume that the most likely form of users request is
“find me contiguous video intervals in which a cyborg is
fighting with a monster”. This kind of user’s request can
be represented in the following query form:

Cyborg ∧ Fight ∧ Monster

However, a user’s intention, as mentioned in the Section II,
is ambiguous in this form of query. The simplest interpre-
tation may be the intersection of intervals with those key-
words. In an actual video database, however, there may ex-
ist no video units in which all of the three keywords appear
together at all. Even if there does exist such units, they
may have lost the context of the actual scene since such
units are usually fragmentary. Therefore, the more likely
interpretation of the above query will be “video intervals
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in which each keyword cyborg, fight, monster emerges
somewhere at least once”, or “contiguous video intervals
in which at least one of these keywords emerge in every
frame.
In order to allow users to specify their intention clearly

and declaratively in queries, we introduce new operators
and define a new query syntax as follows:

q ::= (k1 •k2 • . . .•kn)∃ | (k1+k2+ . . . +kn)∀ | q∧q | q∨q

∧ and ∨ are the usual logical conjunction and disjunction.
The meanings of the other two constructs are as follows:
1. (k1 • k2 • . . .• kn)∃ — this means that all keywords ki

must emerge simultaneously somewhere in the answer
interval. That is, this query specification requires that
an answer interval I[fs, fe] should satisfy the following
condition:

∃f ∈ I[fs, fe].∀i ∈ {1, . . . , n}.(ki emerges in f)

2. (k1 + k2 + . . . + kn)∀ — this means that at least
one of k1, . . . , kn must emerge everywhere, i.e. in ev-
ery frame, in the answer interval. That is, this query
specification requires that an answer interval I[fs, fe]
should satisfy the following condition:

∀f ∈ I[fs, fe].∃i ∈ {1, . . . , n}.(ki emerges in f)

Readers may think that (k1•. . .•kn)∀ and (k1+. . .+kn)∃

are also necessary. However, they are not needed because
the following equivalence holds:

(k1 • . . . • kn)∀ ≡ (k1)∀ ∧ . . . ∧ (kn)∀

(k1 + . . . + kn)∃ ≡ (k1)∃ ∨ . . . ∨ (kn)∃

The equivalence above is obvious because they correspond
to the following theorem in the predicate logic:

∀x.P (x) ∧ Q(x) ≡ (∀x.P (x)) ∧ (∀x.Q(x))
∃x.P (x) ∨ Q(x) ≡ (∃x.P (x)) ∨ (∃x.Q(x))

Readers may also notice that both • and ∧ mean conjunc-
tion, and both + and ∨ disjunction. In this paper, however,
we use different symbols depending upon whether they are
used inside or outside of the quantifiers ∃ and ∀. The rea-
son is, as we explain later, they need different processing
during the answer computation.
As a result, the general form of the query composed of

those constructs can be expressed as below:

(k • . . . • k)∃ ∧ . . . ∧ (k • . . . • k)∃∧
(k + . . . + k)∀ ∧ . . . ∧ (k + . . . + k)∀

∨ (k • . . . • k)∃ ∧ . . . ∧ (k • . . . • k)∃∧
(k + . . . + k)∀ ∧ . . . ∧ (k + . . . + k)∀
...

∨ (k • . . . • k)∃ ∧ . . . ∧ (k • . . . • k)∃∧
(k + . . . + k)∀ ∧ . . . ∧ (k + . . . + k)∀

As in usual expressions with ∧ and ∨, we consider that ∧
has priority to ∨ during the evaluation.
Let us consider some example queries:

1. (Cyborg)∃ ∧ (Fight)∃ ∧ (Monster)∃

2. (Cyborg • Monster)∃ ∧ (Mountain)∀

3. (Cyborg+ Monster)∀ ∧ (Cyborg • Shoot)∃
4. (Cyborg)∃ ∧ (Fight)∃ ∧ (Mountain)∀

5. (Cyborg)∀ ∧ (Monster)∀ ∨ (Fight)∀

Intuitively, these queries can be interpreted as follows
respectively:
1. “find me video intervals in which each cyborg and
monster appears somewhere and fighting is taking
place somewhere”.

2. “find me video intervals in which the mountain ap-
pears throughout the scene and somewhere in the scene
cyborg and monster appear together”.

3. “find me video intervals in which either the cyborg
or the monster appear everywhere and somewhere in
the scene cyborg is seen shooting” .

4. “find me video intervals in which the mountains ap-
pear everywhere and the cyborg and the monster ap-
pear somewhere but not necessarily together”.

5. “find me video intervals in which both cyborg and
monster appear throughout the scene or fighting has
taken place throughout the scene”.

B. Interval Operations

To formally define the operational semantics of the queries
specified by a user, we first need to define video operations
on intervals and sets of intervals. These operations defined
below will eventually be used to compute the interval an-
swers from video units indexed in the database.
As stated before, a video interval is represented by a

set of frames. Therefore, the set-theoretic operations can
be applied to video intervals. Previous works on video
databases have also defined variants of such set operations
[7], [18]. However, some operations have been modified
and some additional operations that will be relevant to
our query mechanism will be introduced as well.
For the sake of clarifying the motivation behind our

work, we have been using the term video units to refer
to the stored intervals and answer intervals to refer to the
computed answers to a video query. Hereafter, unless such
distinction is necessary, we will simply use the term inter-
val to refer to any video data whether they are the stored
video units, the intermediate results yielded by interval
operations or the resulting final answers to a query.

B.1 Interval Set Union

Given two sets of video intervals X and Y such that X ⊆
I(F ) and Y ⊆ I(F ), the operation interval union (�) on
these sets yields a single set of video interval S as follows:

X � Y = {I [fs, fe] | (∀f ∈ I.∃I ′ ∈ X ∪ Y.f ∈ I ′)∧
(∀I ′ ∈ X ∪ Y.fs−1 �∈ I ′ ∧ fe+1 �∈ I ′)}

This operation takes input from two sets of intervals, which
may contain overlapping and several adjacent intervals,
and produces a single set of non-overlapping contiguous
intervals. Adjacent intervals are concatenated to produce
a single contiguous interval. Thus supposing there are two
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sets of video intervals X = {I1[10, 20], I2[30, 40]} and Y =
{I3[15, 35], I4[45, 55]}, then X�Y = {I5[10, 40], I6[45, 55]}.
B.2 Extended Union

Given two video intervals I1 and I2 over I(F ), the opera-
tion extended union (⊕) on these two video intervals yields
a single video interval I as follows:

I1 ⊕ I2 = I[fs, fe] where
fs = min(start(I1), start(I2)) and
fe = max(end(I1), end(I2)).

This operation takes two intervals as input and produce a
single contiguous interval. The resulting interval will be
contiguous no matter whether the input intervals are adja-
cent , overlapping, or nonoverlapping and nonadjacent . We
emphasize here that the various interval operations defined
in [7], [9], [18], [27] are unable to do that. Thus supposing
there are two video intervals I1[10, 20] and I2[30, 40] then
I1 ⊕ I2 = I[10, 40].

B.3 Set Extended Union

This is the set variant of the extended union operation.
Given two sets of video intervals X and Y , the operation
set extended union (

⊕
) returns a set of video intervals

yielded by the pairwise extended union (⊕) between the
elements of the two input sets.

X
⊕

Y = {x ⊕ y | x ∈ X, y ∈ Y }
Fig. 5 shows an example of the operation. Supposing
we have two sets of intervals X = {x1, x2, x3} and Y =
{y1, y2} with three and two elements respectively as shown
in the top of the figure, X ⊕ Y yields a set of six intervals
I1, . . . , I6 as shown at the bottom of the figure.

{                       }
{                       }

{       }X ⊕ Y =

X =
Y =

I1

I3
I4
I5
I6

I2

x1
y1 y2

x2 x3

Fig. 5. Set Extended Union

B.4 Powerset Extended Union

Given two sets of video intervals X and Y , the operation
powerset extended union (

⊗
) returns a set of video in-

tervals. These intervals are yielded by applying extended
union (⊕) to an arbitrary number (but not 0) of elements
in X and Y . Formally, it is defined as follows:

X
⊗

Y = {⊕(X ′ ∪ Y ′) |
X ′ ⊆ X, Y ′ ⊆ Y, X ′ �= ∅, Y ′ �= ∅}

where
⊕{i1, i2, . . . , in} = i1 ⊕ . . . ⊕ in.

This definition can be expanded as:

X
⊗

Y = (X
⊕

Y ) ∪
(X

⊕
X

⊕
Y ) ∪

(X
⊕

Y
⊕

Y ) ∪
(X

⊕
X

⊕
X

⊕
Y ) ∪

(X
⊕

X
⊕

Y
⊕

Y ) ∪
(X

⊕
Y

⊕
Y

⊕
Y ) ∪

...

Suppose we have two sets of intervals X = {x1, x2, x3} and
Y = {y1, y2} with three and two elements respectively as
shown at the top of the Fig. 6. Intervals I2,. . . ,I7, shown at
the bottom of the figure, are yielded by applying extended
union to different pairs of intervals — each pair consisting
of one element from X and one from Y . The same oper-
ation yields interval I1 when performed on an interval set
consisting of the two rightmost elements x2 and x3 from
X and one element y2 from Y . Interval I8 is yielded when
performed on another interval set that consists of at least
two extreme elements x1 and x3 from X and either one
or both of the elements from Y . We may also consider
other combinations but the result will be one of the eight
intervals I1, . . . , I8.

{                       }
{                       }

{       }X ⊗ Y =

X =
Y =

I1

I3
I4
I5
I6
I7
I8

I2

x1
y1 y2

x2 x3

Fig. 6. Powerset Extended Union of X and Y

Although the powerset extended union seems to be a
complex operation, its excellent property allows us to es-
tablish a simpler and more efficient definition. A closer
study reveals that the same operation can be computed by
the formula below.

X
⊗

Y = (X
⊕

X)
⊕
(Y

⊕
Y )

The transformation of the powerset extended union into
three pairwise extended union operations is possible be-
cause both extended union and pairwise extended union
hold certain algebraic properties. Readers are suggested
to refer to our more recent publication for the details of
these properties [21]. Here we give only an intuitive ex-
planation. Since extended union operation between two
intervals returns the minimal interval that contains both
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of the input intervals, any other intervals encompassed by
the two input intervals will also be contained in the result-
ing interval. As a result, when an interval set performs set
extended union operation on itself such as X

⊕
X , the re-

sulting set will have already contained all the intervals that
would have been yielded by performing the same operation
infinite number of times on the same interval set. Formally,
X

⊕
X = X

⊕
X

⊕
X = X

⊕
X

⊕
. . .

⊕
X . This also

means X
⊕

X will yield all the intervals that extended
union can yield when applied on one or more elements
in X . We can also prove that both (X

⊕
X

⊕
Y ) and

(X
⊕

Y
⊕

Y ) are subsets of (X
⊕

X
⊕

Y
⊕

Y ). There-
fore, the operation (X

⊕
X)

⊕
(Y

⊕
Y ) produces the

same set of intervals as would be produced by X
⊗

Y .
In Fig.7, the operations (X

⊕
X) and (Y

⊕
Y ) produce

two sets consisting six and three intervals respectively. Fur-
ther set extended union operation on these two sets yields
eight intervals I1, . . . , I8 which is the same set of results
that is obtained using its original definition (See Fig.6).

{      }

{                       }

{      }
{      }

X ⊕ X =

Y ⊕ Y =

(X ⊕ X) ⊕ (Y ⊕ Y) =

X =
Y =

x1
y1 y2

x2 x3

Fig. 7. Property of Powerset Extended Union

B.5 Interval Intersection

Given two video intervals I1 and I2 over I(F ), the two
video intervals I1 and I2 are said to be intersecting iff
∃f.f ∈ I1 ∧ f ∈ I2, that is, max(start(I1), start(I2)) ≤
min(end(I1), end(I2)). The operation interval intersection
(�) on any two arbitrary video intervals yields a single
video interval I as follows:

I1 � I2

=




I[fs, fe] if I1 and I2 are intersecting

undefined otherwise

where fs = max(start(I1), start(I2)) and fe =
min(end(I1), end(I2)). Thus supposing there are two video
intervals I1[10, 20] and I2[15, 40] then I1 � I2 = I[15, 20].
However, for I1[10, 20] and I2[25, 40], I1 � I2 does not pro-
duce any interval.

B.6 Interval Set Intersection

This is the set-variant of interval intersection operation.
The interval set intersection (

⊙
) operation on two sets

of video intervals X and Y returns a set of video inter-
vals constituting of the pairwise interval intersection (�)
between the elements of the two input sets.

X
⊙

Y = {x � y | x ∈ X, y ∈ Y, x and y intersect}
B.7 Intersect Test

The intersect test operation (�) on two sets of video inter-
vals X and Y returns a subset of X including only intervals
in X that intersect with at least one interval in Y .

X�Y = {x ∈ X | {x}⊙Y �= ∅}

{                       }

{       }

{                       }

X Θ Y =

X =
Y =

x1
x2

x1
y1 y2 y3

x2 x2

Fig. 8. Intersect Test between X and Y

For example, in Fig. 8, both X and Y has three elements
{x1, x2, x3} and {y1, y2, y3} respectively. However, X � Y
will include only two intervals x1 and x2, because x3 does
not intersect with any of the intervals y1, y2 or y3 in Y .

C. Query Semantics

Having defined a set of video operations, now we formally
define the operational semantics of the queries. Intuitively
(but not strictly), the semantics of a query is defined on
the basis of the following policies. The answer to a query
includes those intervals such that:
1. they satisfy the condition specified in the query, and
2. they are as short as possible, that is, no other subin-
tervals contain the same number of indexed video
units associated with the keywords given in the query.

Next we define the semantics of queries step by step
starting from a simple query, and finally showing the se-
mantics of queries in general form.

C.1 Single Term Queries

Single term queries are those that contain only a single
term with a single quantifier. As explained before, there
are two kinds of simple queries.
1. (k + . . .+ k)∀

2. (k• . . . •k)∃
The answer to simple queries are defined as follows. In the
following definitions, [[q]] denotes the answer to a query q.

[[(k)∀]] = {I |∃(k, I) ∈ VD}
[[(k1 + . . . + kn)∀]] = [[k1]] � . . . � [[kn]]



PRADHAN ET AL.: A QUERY MODEL TO SYNTHESIZE ANSWER INTERVALS FROM INDEXED VIDEO UNITS 9

IA1[50,200]

IA2[100,350]

IA3[50,350]

IA4[100,400]

IA5[210,400]

IA6[50,400]

I2[210,350]

(k1, I2[210,350])

I5[50,350]

(k2, I4[300,400])

I4[300,400]

I6[100,400]

(k2, I3[100,200])

I3[100,200]

(k1, I1[50,150])

I1[50,150]

}
}

Final Result Set

Intermediate Sets of Intervals

S2 =

S1 =

{

{

Fig. 9. An example of a conjunctive query

[[(k)∃]] = {I |∃(k, I) ∈ VD}
[[(k1• . . . •kn)∃]] = [[k1]]

⊙
. . .

⊙
[[kn]]

In the definition above, we simply write [[k]] instead of
[[(k)∀]] or [[(k)∃]] whenever no distinction is necessary be-
tween them, i.e. [[(k)∀]] = [[(k)∃]].

C.2 Conjunctive Queries

Conjunctive queries are the ones which contain multiple
terms listed with conjunctions. First we define the op-
erational semantics of conjunctive queries including only
either existential quantifiers or universal quantifiers.

[[(k1
1 + . . .+ km1

1 )∀ ∧ . . .

∧(k1
n + . . . + kmn

n )∀]] = [[(k1
1 + . . . + km1

1 )∀]]
⊙

. . .⊙
[[(k1

n + . . .+ kmn
n )∀]]

[[(k1
1 • . . . • km1

1 )∃ ∧ . . .

∧(k1
n • . . . • kmn

n )∃]] = [[(k1
1 • . . . • km1

1 )∃]]
⊗

. . .⊗
[[(k1

n • . . . • kmn
n )∃]]

The following two examples will clarify the semantics of
operations performed on video intervals to synthesize an-
swers.

Example 1: Let us take an illustrative example. Sup-
pose we have the following information stored in the data-
base.

(k1, I1[50, 150])
(k1, I2[210, 350])

(k2, I3[100, 200])
(k2, I4[300, 400])

Intervals I1, . . . , I4 are shown at the top of Fig. 9. Let us
consider the query “find me video intervals in which both k1

and k2 appear somewhere”. The query can be formulated
as:

Q = (k1)∃ ∧ (k2)∃.

Then [[(k1)∃]] and [[(k2)∃]] can be given as follows:

[[(k1)∃]] = {I1[50, 150]), I2[210, 350]}
[[(k2)∃]] = {I3[100, 200]), I4[300, 400]}

Next we need to perform powerset extended union (
⊗
)

between the two sets [[(k1)∃]] and [[(k2)∃]].
As explained before, it can be computed by using set

extended union operations as below:

[[(k1)∃]]
⊗
[[(k2)∃]] =

([[(k1)∃]]
⊕

[[(k1)∃]])
⊕

([[(k2)∃]]
⊕
[[(k2)∃]])

The set extended union operation (
⊕
) on each of these sets

with itself will produce the following two sets of intervals.

S1 = [[(k1)∃]]
⊕
[[(k1)∃]]

= {I1[50, 150], I2[210, 350], I5[50, 350]}
S2 = [[(k2)∃]]

⊕
[[(k2)∃]]

= {I3[100, 200], I4[300, 400], I6[100, 400]}
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S1 and S2 are shown in the middle of Fig. 9. Performing the
set extended union operation further on these two resulting
sets will produce the following set of interval answers.

[[Q]] = S1

⊕
S2

= {IA1[50, 200], IA2[100, 350], IA3[50, 350],
IA4[100, 400], IA5[210, 400], IA6[50, 400]}

These intervals are shown at the bottom of Fig. 9.
Example 2: Let us take a more realistic example. Sup-

pose we have the following information stored in the data-
base.

(cyborg, I1)
(cyborg, I2)
(monster, I3)
(shoot, I4)

I1, . . . , I4 are intervals as shown in Fig. 10. Let us con-

IA1

S2 =

S1 =

I4

I5

I2

I6

I1

I3
(monster)∀

(cyborg)∀

(shoot)∀

(cyborg·monster)∀

(cyborg·monster)∃  ^ (cyborg·shoot)∃

(cyborg·shoot)∀{                                  }
{                                  }

Fig. 10. Conjunctive query consisting of a pair of simultaneous query
terms

sider the query “find me video intervals in which cyborg
and monster together appear somewhere and somewhere
in the scene cyborg is seen shooting”. The query can be
formulated as:

Q = (cyborg • monster)∃ ∧ (cyborg • shoot)∃.

The operations given below are obvious.

[[(cyborg • monster)∃]] = {I5}
[[(cyborg • shoot)∃]] = {I6}

S1 = [[(cyborg • monster)∃]]⊕[[(cyborg • monster)∃]]
= {I5}

S2 = [[(cyborg • shoot)∃]]⊕[[(cyborg • shoot)∃]]
= {I6}

where I5 and I6 are the intervals shown in the middle of
Fig. 10. Finally, the following set of intervals are returned
as the answer.

[[Q]] = S1

⊕
S2 = {IA1}

IA1 is shown at the bottom of Fig. 10.
The semantics of general form of conjunctive queries in-

cluding both existential quantifiers and universal quanti-
fiers are defined as below:

[[(q1)∀ ∧ . . . ∧ (qm)∀ ∧ (qm+1)∃ ∧ . . . ∧ (qn)∃]]

=




[[(q1)∀]]
⊙

. . .
⊙
[[(qm)∀]]�

[[(qm+1)∃]]� . . .�[[(qn)∃]] if m �= 0

[[(qm+1)∃]]
⊗

. . .
⊗

[[(qn)∃]] if m = 0

Next we show an example of a complex query consisting
of both kinds of quantifiers. Suppose intervals I1 and I2

associated with keyword k1 and k2 respectively, and inter-
vals I3 and I4 associated with keyword k3 as illustrated at
the top of the Fig. 11. Then for a user wanting to find out
an interval where there appears k3 throughout the interval
and each k1 and k2 appears somewhere in the interval, the
query is formulated as below:

Q = (k1)∃ ∧ (k2)∃ ∧ (k3)∀.

For this query, the computation defined above will return
I8 (shown at the bottom of the Fig. 11) as an answer but
not I7 because the operation �[[k1]] eliminates I7.

(k2, I2[200,250])

I5[100,250]

(k3, I4[225,375])

I7[225,375]

I6[80,260]

I8[80,260]

(k3, I3[80,260])

(k1, I1[100,150])

Fig. 11. A complex conjunctive query

C.3 Disjunctive Queries

Finally, the semantics of disjunctive queries is simply de-
fined by the usual set union.

[[q1 ∨ . . . ∨ qn]] = [[q1]] ∪ . . . ∪ [[q1]]
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VI. Degree of Relevance and Ranking

As stated before, because of their relaxed semantics, cer-
tain types of queries when submitted against a video data-
base, may produce answer intervals having unequal degree
of relevance. It should be noted that a conjunctive query
with existential quantifiers of type (q1)∃∧(q2)∃∧. . .∧(qn)∃,
in particular, may yield an answer set that may contain a
large number of elements. It is because of the way the
answer intervals are computed by the powerset extended
union operation applied for such queries. Not all of those
elements may be equally relevant to a user who submits the
query. It is important that the system be able to present
the answers in the best possible manner to a user. The
most common way to present a large number of unequal
answers is to rank them in order.
Ranking strategy is important in any information re-

trieval systems [16], [22]. Its importance is even greater,
especially in video databases in which query answer units
are not predefined in the database but rather computed
dynamically using the available information. There are
many kinds of video resources such as TV News, movies,
animations etc. and these resources are widely used in dif-
ferent video applications such as Video On Demand, News
On Demand, education, video documentation, research-
oriented programme etc. [3], [8]. Having such a wide vari-
ety of data and numerous kinds of applications, it is very
difficult to make definite unique choices on how to compute
relevance since relevance largely depends on the nature of
the applications and the nature of the query itself.
However, we believe a relevant answer to any video data

query, in general, should be an interval which intuitively,
1. should satisfy all the query conditions,
2. should be short enough in such a way that it does not
contain too much unnecessarily lengthy scenes, and

3. should be long enough in such a way that it doesn’t
break out of the context.

We propose two different ways to compute the degree of
relevance of a video interval against a given query.

A. Weighted Terms

Supposing there are n terms in the query q = (k1)∃ ∧
(k2)∃ ∧ . . . ∧ (kn)∃, and suppose an answer I has L num-
ber of frames. Then the answer I’s degree of relevance to
the query q is computed as

∑
li/L, where li is the length

of frames in which the term ki emerge. This strategy is
chosen under the assumption that the keywords relevant
to a query statement are clustered within a certain range
of video interval. It is also assumed that two contextually
related keywords in a meaningful video interval are, in gen-
eral, close to each other. The basic idea is that the more
the video units in which the query terms appear to overlap,
the more significance the resulting interval will have.
Consider an example with four intervals I1, . . . , I4 shown

at the top of the Fig. 12. Then supposing for a query
q = (k1)∃ ∧ (k2)∃, four answer intervals IA1, . . . , IA4 are
computed as shown at the bottom of the Fig. 12. The
average length of frames, which is computed by the for-
mula

∑
li/L stated above, in which the query terms are

(k2,I4[340,440])

(k1,I2[350,440])(k1,I1[50,150])

(k2,I3[100,200])

1.900

1.333

1.000

1.000

IA1[340,440]

IA2[50,200]

IA3[100,440]

IA4[50,440]

Fig. 12. Ranking based on weighted terms

clustered determines the relevance of an answer. For ex-
ample, for the answer interval IA1, it is ((440 − 350) +
(440−340))/(440−340) = 190/100 = 1.900. The numbers
shown at the bottom right side in Fig. 12 indicate each
answer interval’s respective degree of relevance.

B. Maximal Length of Allowable Noise

Given a query q = (k1)∃ ∧ (k2)∃ ∧ . . . ∧ (kn)∃, noise is
said to exist in a video interval if and only if there exists
a frame in which none of the term present in the query
would emerge. Otherwise, the interval is called noise-free
for the query q.
The ranking strategy described above cannot be justi-

fied when two keywords are separated too far. It is highly
unlikely that a gap of an hour between two keywords can
still preserve the context in which they appear. In such
cases, whether a noise is allowable or not depends largely
on the absolute length of that noise and not on the relative
length.
In most TV dramas and movies, we often see that two

persons appear for some time, then other things are shown
for a very short moment, and those two persons appear
again. In such cases, it can be assumed that the entire in-
terval including the noise (the short interval of time when
both of the persons do not appear at all) composes a sin-
gle scene, because such short intervals do not break the
contextual flow of the scene. On the other hand, if the
length of such noise is five minutes in an interval with sim-
ilar contents, then its possibility of being just a sequence
of frames breaking two independent scenes is quite high.
Therefore, in such cases, a different strategy must be taken
into consideration.
The second method considers the maximum length of

contiguous noise frames that may be irrelevant to a given
query. The basic idea is the farther the keywords are sep-
arated, the less likely the interval’s relevance for the given
query will be. Consider again an example, with four inter-
vals I1, . . . , I4 shown at the top of the Fig. 13. Then sup-
posing for a query q = (k1)∃ ∧ (k2)∃, four answer intervals
IA1, . . . , IA4 are computed as shown at the bottom of the
Fig. 13. In the figure, white rectangles indicate the noise
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portions and the negative numbers shown at the right side
are the measures of the respective maximum noise present
in each answer interval.

(k2,I4[350,450])

(k1,I2[470,550])(k1,I1[50,200])

(k2,I3[50,200])

(2.000)

(0.900)

(1.000)

(0.960)

-0

-20

-150

-150

IA1[50,200]

IA2[350,550]

IA3[50,450]

IA4[50,550]

Noise

Fig. 13. Ranking based on the absolute length of noise

The answer interval IA2 ranked higher than IA3 because
IA2 includes shorter length of noise than IA3 or IA4 and
therefore can be considered more likely to be an indepen-
dent scene. It is important to note that when the same
set of intervals are ranked according to the weighted terms
strategy, IA2 is ranked last, that is after IA3 and IA4.
In the figure, this different ranking order is denoted inside
the parenthesis shown at the rightmost side of each answer
interval.

VII. Query Approximation

Video data may not have been described in the way a user
may have expected. It is difficult to imagine that the ex-
pressions used by end-users will always conform with the
annotations associated with video units [20]. As a result,
sometimes no video intervals may be exactly matched with
the users’ specification. We provide a query evaluation
based on approximation for dealing with empty answers in
our query mechanism.
Approximative answers have been studied by many re-

searchers in the past. Approximation is necessary usually
when a database system has only partial information [12],
[16] about the real world. In [11], several constructs have
been defined for various kinds of partial information. In [2],
it is argued that even when two systems have complete in-
formation about two separate worlds, the information that
they possess may be insufficient to answer certain queries.
They have shown how answers can be approximated for
dealing with such queries. [25] proposes a query processor
that makes approximate answers available when there is
not enough time to produce an exact answer. As many
of these researchers have pointed out there are some ad-
vantages to use approximation-based query evaluation. An
approximate answer is quicker to evaluate and could be an
intermediate answer so that user interaction could be al-
lowed during the query processing. If there is no precise
answer to a query, an approximate answer, even though it

is not exact, will be returned.
Our query evaluation based on approximation can be

summarized as follows. First we define two different kinds
of orderings among video intervals. The first ordering is
defined on the basis of how well two different annotations
can describe the same video interval. The second order-
ing is defined between a video interval and its subintervals
according to the goodness of the information contained in
them. This will let us define ordering on a set of queries
according to how specific or how general the conditions
specified in the queries are. We then describe some strate-
gies for re-formulating the original query in such a way that
intervals that can be approximated to the original query
are returned as answers.

A. Ordering based on Annotations

There are many different ways to interpret a video interval.
All ‘Bill Clinton’, ‘American President’, ‘Politician’ can be
keyword interpretations of a video interval showing ‘Bill
Clinton’. Those keywords, however, are not equal to each
other. Some of them are more specific than others.
In order to define ordering among the annotations as-

sociated with a video interval, we first define a value gen-
eralization hierarchy which is a partial order where values
are ordered on the basis of a more-specific (�) relation-
ship. We assume this relationship to be reflexive, transi-
tive and anti-symmetric. An expression such as k � k′ de-
notes that a value k′ is more-specific than another value k.
politician � Bill Clinton thus indicates that the value
Bill Clinton is more-specific than the value politician.
Then we also define the relation � for interval annota-

tion in a natural way as follows:

(k, I) � (k′, I) iff k � k′

[19] has presented a more ambitious annotation model
in which descriptive keywords supplemented by quantifiers
such as somewhere, everywhere and simultaneous can be
provided to arbitrarily chosen video intervals. The detailed
explanation is beyond the scope of this paper. For such an
ideally described video data, the ordering on annotations
can be extended in such a way that

((k)∃, I) � ((k)∀, I)

and
((k1)∃ ∧ (k2)∃, I) � ((k1 • k2)∃, I)

Furthermore, a set of annotations containing more descrip-
tive keywords is more-informative than one containing a
lesser number of keywords.

((k1)∃ ∧ (k2)∃, I) � ((k1)∃ ∧ (k2)∃ ∧ (k3)∃, I)

B. Ordering based on Interval-Subinterval Relationship

Ordering can be also defined between a video interval and
its subintervals according to the goodness of the informa-
tion contained in them. For two intervals I and I ′ having
a relationship of I ′ ⊂ I, interval I ′ is said to be a more-
informative interval than I, if I ′ contains at least as much
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information as I plus some extra information. Intuitively,
if I and I ′ both contains a keyword k partially (that is
somewhere within the interval) and I ′ is a subinterval of I,
then I ′ is considered more-informative. This judgment is
made on the basis that compared to I, I ′ has less number
of frames where k does not appear. In other words, I ′ has
relatively less partial information and hence provides us
richer information about the whole data in general. Again
we use I � I ′ to denote I ′ is more-informative than I.
More formally,

((k)∃, I) � ((k)∃, I ′) for each I ′ ⊂ I

and

((k1 • k2)∃, I) � ((k1 • k2)∃, I ′) for each I ′ ⊂ I.

However it should be noted that

((k)∀, I ′) � ((k)∀, I) for each I ′ ⊂ I.

C. Query Reformulation

Given a query Q′, if no answer intervals are found, then
the query can be reformulated into Q such that Q � Q′.
Here, the original query Q′ is more specific than the refor-
mulated query Q. It should be noted here that if [[(Q′)]]
and [[(Q)]] represents the set of answers for the query Q′

and Q respectively, then [[(Q′)]] ⊂ [[(Q)]].
The following strategies explain the query reformulation

in general.

C.1 Universal Approximation

If a query (q)∀ is issued but there is no interval that satisfies
the condition specified by q throughout its play, then the
query can be reformulated to (q)∃.

C.2 Simultaneity Approximation

If a query (q1 • q2)∃ is issued but there is no interval in
which q1 and q2 appear simultaneously, then the query
can be reformulated to (q1)∃∧ (q2)∃, i.e. a query retrieving
intervals in which both q1 and q2 appear but at different
places within the intervals.

C.3 Generalization Approximation

If a query (k)∃ is issued but there is no interval in which k
emerges, then the query can be reformulated to (k′)∃ with
some keyword k′ that is less-specific than k.
It should be noted that a single query statement Q may

have many approximations. The query should be reformu-
lated in such a way that the closest answers to the one
that would have been found by the original query should
be returned. Thus, if Q2 � Q1 � Q, then Q1 should
be the immediate choice as the reformulated query for Q.
However, there may not be just one such closest candidate
because there are several ways to make a query less spe-
cific as explained above. When there are multiple closest
candidates, we need to select only one of them on the basis
of some criteria. However, this issue will not be discussed
further in this paper.

VIII. Conclusion and Future Works

In any video database system, end-users often have dif-
ficulty in retrieving the intervals that they desire to see.
This is because the intervals they are hoping to find may
not have been defined as answer units in the database.
Whether indexing units are extracted automatically or
identified manually, descriptive information about video
data can be associated with only fragmentary video units.
As a result, the problem will definitely arise when users
issue queries to look for undefined intervals. In such cases,
intervals need to be computed dynamically from the in-
dexed units that currently exist in the database. We have
presented a new video query model which attempts to find
a set of possible interval answers from such a video data-
base. The model has not been designed with one particular
indexing scheme in mind.
In order to compute interval answers, we defined a new

set of operations for queries that are most likely to be sub-
mitted on a video database. We also presented a frame-
work in which users can specify their queries declaratively
by simply listing keywords with quantifiers. The seman-
tics of these query specifications are obvious, which make
query interpretation easy. The answers to those declara-
tive queries are computed by transforming those queries
into algebraic query expressions and by evaluating them.
These expressions contain specified keywords and respec-
tive operations. To present the answers in the best pos-
sible manner, we discussed some ranking strategies that
are relevant to video databases. We also discussed how
query approximation can be realized in case no answers to
a query can be computed.
Algebraic operations such as union, intersection, con-

catenation does not always produce the desired answers
since these operations do not consider the presence of noise
in a meaningful unit, which is highly natural and common
in video data. The main contribution of this paper is the
definitions of interval extended union operation and its set
variants. Given a query, these operations let us compute
all the possible boundaries for interval answers from a set
of stored video units. In other words, meaningful units can
be computed from a source of fragmentary units which may
or may not be meaningful in their original forms. It should
be noted here that these operations can be extended to any
continuous data whose semantic boundaries for meaning-
ful units can be defined in numerous ways. As a matter of
fact, the idea of synthesizing answer intervals from indexed
video units can even be implemented in a hybrid system
such as QBIC [5] [10].
There are many open issues that need additional inves-

tigation. The ranking strategies presented here may not
be the best ones and therefore need further study. In [17],
various methodologies for benchmarking multimedia data-
bases are proposed. They have classified retrieval tech-
niques into four categories according to the nature of data
and query. Precise vs imprecise data and well-formulated
vs ill-formulated queries are discussed. In our case, al-
though the data in itself may be precise, it may be incom-
plete to answer even precise queries. Hence, there is a pos-
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sibility of imprecise answers being computed and returned.
A new methodology needs to be considered to benchmark
the retrieval of continuous media such as video.
The extended union operation produces plenty of inter-

vals most of which might be irrelevant to the user. In
real applications, however, such answer overloading is in-
efficient and undesirable. As we discussed in Section VI
also, there exists certain temporal constraints in a video
interval to make it a single meaningful unit. In [28], time-
constrained policy is used as an aid for clustering video
shots. This notion can be applied to evaluate whether the
similar keywords that emerge within a time interval form
a single meaningful unit or not. In order to reduce answer
overloading, other explicitly specified temporal constraints
need to be considered as well. We have been working on
these issues and so far the results have been promising.
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