
Answering XPath Queries over Networks
by Sending Minimal Views

Keishi Tajima Yoshiki Fukui
Japan Advanced Institute of Science and Technology (JAIST)

31 Aug. 2004

Target

XML Information Services on networks
• On-line XML databases

a query

client −→
←− server

an answer set
• Subscription Systems

register a set of queries

client −→
←− server

answer sets (on Week 1)
answer sets (on Week 2)

...
1

Problem

Answers to XML Queries Can be Redundant

When issuing a set of queries and getting answer sets . . .

• an element may appear in more than one answer set

• an element in one answer set may be a subelement of an
answer in another answer set

• an element in one answer set may be a subelement of
another answer in the same answer set

2

Problem

Example 1
Q1: abstracts of papers including XML in their titles
Q2: entire papers including XML and XPath in their titles

client

title

paper

abst body

"XML&XPath"

abst

"This..." "This..."

server

Communication cost is not optimal

3

Problem

Example 2
Q: chapters, sections, . . . etc including XML in the headings

client

heading

chapter

section

"XML" heading

"XML Schema"

body

section

heading

"XML Schema"

body

server

Communication cost is not optimal even with a single query

4

Problem

Assumption
Here, we assume:
• Databases are services provided by someone else.

– All we can do is to submit queries and get answers.
– No special encodings or protocols can be used.

• Servers provide XPath interface.
– Full-fledged QLs are too expensive for large-scale services

on the Internet.
– Subtree extraction only. Queries cannot delete redundant

parts or embed some markers in the answers.

5

Our Solution

Example 1
Q1: abstracts of papers with XML in their titles
Q2: entire papers with XML and XPath in their titles

⇓
V1: abstracts of papers with XML but not XPath in the titles
V2: entire papers with XML and XPath in their titles

⇓
The answer to Q1 is the union of:
• the answer to V1, and
• the abstracts extracted from the answer to V2

6

Our Solution

Example 2
Q: chapters, sections, . . . etc with XML in their headings

⇓
V : chapters, sections, . . . etc with XML in their headings,

but with no such ancestor
⇓

• The answer to V includes all the top-most answers to Q.
• All the other nesting answers can be extracted from them.

7

Our Solution

1. Given Q1, . . . , Qn, the client submits V1, . . . , Vm s.t.
• the answers to Q1, . . . , Qn can be extracted from the

answers to V1, . . . , Vm, and
• the total size of the answers to V1, . . . , Vm is minimal.

V1, . . . , Vm is a minimal-size view set
that can answer all the original queries.

2. The server sends the answers.
3. The client extracts the final answers from those answers.

8

The Goal of This Research

We develop an algorithm for computing a minimal-size
view set that can answer all the given queries.

Here,
• we consider (a fragment of) XPath,
• we do not consider minimization of the number of queries.

9

Organization of the Rest of the Presentation

1. XPath fragment we use
2. more examples and intuitions behind the algorithm
3. the algorithm
4. related work
5. conclusion

10

Preliminary

A Fragment of XPath

q ::= /p | //p | q ∪ q | q − q

p ::= a | {a1, . . . , an} | ∗ | p/p | p//p | p[p] | p[p]

e.g.
• /a/b[c]

• //a/{b}

a

b a b

c c c

dd d

11

Preliminary

A Fragment of XPath

q ::= /p | //p | q ∪ q | q − q

p ::= a | {a1, . . . , an} | ∗ | p/p | p//p | p[p] | p[p]

e.g.
• /a/b[c]

• //a/{b}

d

Ans

b b

c c
⇐=

a

b a b

c c c

dd d

11

Preliminary

A Fragment of XPath

q ::= /p | //p | q ∪ q | q − q

p ::= a | {a1, . . . , an} | ∗ | p/p | p//p | p[p] | p[p]

e.g.
• /a/b[c]

• //a/{b}

Ans

a

c

dd

c

dd
⇐=

a

b a b

c c c

dd d

11

Example 1: Non-Recursive Queries of the Same Length

Given: 
Q1 : /a/{b}/d
Q2 : /a/{c}/d

then, we submit: 

V1−2 : /a/c/d
V1∩2 : /a/{b,c}/d
V2−1 : /a/b/d

and produce the final answers:
Q1 ← (V1−2, /Ans/∗)
Q1 ← (V1∩2, /Ans/∗)
Q2 ← (V1∩2, /Ans/∗)
Q2 ← (V2−1, /Ans/∗)

12

Example 1: Non-Recursive Queries of the Same Length

Given: 
Q1 : /a/{b}/d
Q2 : /a/{c}/d

then, we submit: 

V1−2 : /a/c/d
V1∩2 : /a/{b,c}/d
V2−1 : /a/b/d

← Q1 −Q2
← Q1 ∩Q2
← Q2 −Q1

and produce the final answers:
Q1 ← (V1−2, /Ans/∗)
Q1 ← (V1∩2, /Ans/∗)
Q2 ← (V1∩2, /Ans/∗)
Q2 ← (V2−1, /Ans/∗)

12

Example 1: Non-Recursive Queries of the Same Length

Given Q1, . . . , Qn of the same length,
{V (S) | S 6= ∅, S ⊆ {1, . . . , n}}

is a minimal view set, where
V (S) =

i ∈ S
∩ Qi −

i ∈ {1, . . . , n} − S
∪ Qi

and we need
Qi← (V (S), /Ans/∗) for i ∈ S

V (S) correspond to the
regions in the Venn diagram.

Q1 Q2

Q3

1 3 2
75 6
4

13

Example 2: Non-Recursive Queries of Different Length

Given: 
Q1 : /a/{b}/d
Q2 : /a/{c}/d/e

then, we submit:

V1−2 : /a/c/d
V1∩2 : /a/{b,c}/d
V2−1 : /a/b/d/e

and produce the final answers:
Q1 ← (V1−2, /Ans/∗)
Q1 ← (V1∩2, /Ans/∗)
Q2 ← (V1∩2, /Ans/∗/e)
Q2 ← (V2−1, /Ans/∗)

14

Example 2: Non-Recursive Queries of Different Length

Given: 
Q1 : /a/{b}/d
Q2 : /a/{c}/d/e


pre(Q2) = /a/{c}/d
suf(Q2) = /e



then, we submit:

V1−2 : /a/c/d
V1∩2 : /a/{b,c}/d
V2−1 : /a/b/d/e

← Q1 − pre(Q2)
← Q1 ∩ pre(Q2)
← (pre(Q2)−Q1).suf(Q2)

and produce the final answers:
Q1 ← (V1−2, /Ans/∗)
Q1 ← (V1∩2, /Ans/∗)
Q2 ← (V1∩2, /Ans/∗/e) ← suffix(Q2)
Q2 ← (V2−1, /Ans/∗)

14

Example 3: A Single Recursive Query

Given:
{Q : //a/b/∗/b

then, we submit:
V1 : //a/b/a/b −//a/b/∗/b//∗
V2 : //a/b/{a}/b −//a/b/∗/b//∗

and produce the final answers:
Q ← (V1, /Ans/∗)
Q ← (V2, /Ans/∗)
Q ← (V1, /Ans//a/b/∗/b)
Q ← (V2, /Ans//a/b/∗/b)

Q ← (V1, /Ans/∗/∗/b)

15

Example 3: A Single Recursive Query

Given:
{Q : //a/b/∗/b

then, we submit:
V1 : //a/b/a/b −//a/b/∗/b//∗
V2 : //a/b/{a}/b −//a/b/∗/b//∗ ←

to retrieve only
top-most answers

and produce the final answers:
Q ← (V1, /Ans/∗)
Q ← (V2, /Ans/∗)
Q ← (V1, /Ans//a/b/∗/b)
Q ← (V2, /Ans//a/b/∗/b)

Q ← (V1, /Ans/∗/∗/b)

15

Example 3: A Single Recursive Query

Given:
{Q : //a/b/∗/b (pre(Q) = //a/b, suf(Q) = /∗/b)

then, we submit:
V1 : //a/b/a/b −//a/b/∗/b//∗
V2 : //a/b/{a}/b −//a/b/∗/b//∗

← Q ∩ pre(Q)
← Q− pre(Q)

and produce the final answers:
Q ← (V1, /Ans/∗)
Q ← (V2, /Ans/∗)
Q ← (V1, /Ans//a/b/∗/b)
Q ← (V2, /Ans//a/b/∗/b)

Q ← (V1, /Ans/∗/∗/b) ← suf(Q)

15

Algorithm

Input: 

Q1 : /1
1 p1

1 /2
1 p2

1 . . . /
l1
1 p

l1
1

...
Qn : /1

n p1
n /2

n p2
n . . . /ln

n pln
n

(each /
j
i is either / or //)

Output:

• a set of view queries {V1, . . . , Vm}, and

• a set of triplets of the form Qi← (Vj, q
j
i)

16

Algorithm

Auxiliary Function pp
j
i

pp
j
i ≡ ∅ (empty pattern) if j = 0, /1

i = /
//∗ if j = 0, /1

i = //
/1

ip1
i . . . /

j
ip

j
i if j > 0, /

j+1
i = /

/1
ip1

i . . . /
j
ip

j
i ∪ /1

ip1
i . . . /

j
ip

j
i //∗ if j > 0, /

j+1
i = //

E.g.:

Q1 : //a
Q2 : /b//{c} −→



pp0
1 = //∗

pp0
2 = ∅

pp1
2 = /b ∪ /b//∗

17

Algorithm
Main Routine

1. For every S, T , s.t.:
• S ⊆ {1, . . . , n}, S 6= ∅
• T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ li − 1}

create a view query V (S, T):

(
i ∈ S
∩ Qi −

i 6∈ S
∪ Qi)∩ (

(i, j) ∈ T
∩ pp

j
i −

(i, j) 6∈ T
∪ pp

j
i)−

1≤ i≤n
∪ Qi//∗

2. For each V (S, T), create triplets:
Qi← (V (S, T), /Ans/∗) for i ∈ S

Qi← (V (S, T), /Ans/∗/j+1
i p

j+1
i . . . /

li
i p

li
i) for (i, j) ∈ T

18

Algorithm
Main Routine

1. For every S, T , s.t.:
• S ⊆ {1, . . . , n}, S 6= ∅
• T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ li − 1}

create a view query V (S, T):

(
i ∈ S
∩ Qi −

i 6∈ S
∪ Qi)∩ (

(i, j) ∈ T
∩ pp

j
i −

(i, j) 6∈ T
∪ pp

j
i)−

1≤ i≤n
∪ Qi//∗

⇓

classifying elements based on which Qi it matches

18

Algorithm
Main Routine

1. For every S, T , s.t.:
• S ⊆ {1, . . . , n}, S 6= ∅
• T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ li − 1}

create a view query V (S, T):

(
i ∈ S
∩ Qi −

i 6∈ S
∪ Qi)∩ (

(i, j) ∈ T
∩ pp

j
i −

(i, j) 6∈ T
∪ pp

j
i)−

1≤ i≤n
∪ Qi//∗

⇓

classifying elements based on which prefixes it matches

18

Algorithm
Main Routine

1. For every S, T , s.t.:
• S ⊆ {1, . . . , n}, S 6= ∅
• T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ li − 1}

create a view query V (S, T):

(
i ∈ S
∩ Qi −

i 6∈ S
∪ Qi)∩ (

(i, j) ∈ T
∩ pp

j
i −

(i, j) 6∈ T
∪ pp

j
i)−

1≤ i≤n
∪ Qi//∗

⇓

to only retrieve the top-most answers

18

Algorithm
Main Routine

1. For every S, T , s.t.:
• S ⊆ {1, . . . , n}, S 6= ∅
• T ⊆ {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ li − 1}

create a view query V (S, T):

(
i ∈ S
∩ Qi −

i 6∈ S
∪ Qi)∩ (

(i, j) ∈ T
∩ pp

j
i −

(i, j) 6∈ T
∪ pp

j
i)−

1≤ i≤n
∪ Qi//∗

2. For each V (S, T), create triplets:
Qi← (V (S, T), /Ans/∗) for i ∈ S

Qi← (V (S, T), /Ans/∗/j+1
i p

j+1
i . . . /

li
i p

li
i) for (i, j) ∈ T

18

Algorithm

An Example
For example, given:


Q1 : //a
Q2 : /b//{c}

Then, 

pp0
1 = //∗

pp0
2 = ∅

pp1
2 = /b ∪ /b//∗

• Views for T including pp0
2 or not including pp0

1 are empty.

• ∩pp0
1 and−pp0

2 can be omitted.

19

Algorithm

An Example
Views:

V1 : (Q1 ∩Q2) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V2 : (Q1 ∩Q2)− pp1
2 − (Q1//∗ ∪Q2//∗)

V3 : (Q1 −Q2) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V4 : (Q1 −Q2)− pp1
2 − (Q1//∗ ∪Q2//∗)

V5 : (Q2 −Q1) ∩ pp1
2 − (Q1//∗ ∪Q2//∗)

V6 : (Q2 −Q1)− pp1
2 − (Q1//∗ ∪Q2//∗)

Triplets:
Q1 ← (Vi, //Ans/∗) where i ∈ {1, 2, 3, 4}
Q2 ← (Vi, //Ans/∗) where i ∈ {1, 2, 5, 6}
Q1 ← (Vi, //Ans/∗//a) where i ∈ {1, 2, 3, 4, 5, 6}
Q2 ← (Vi, //Ans/∗//{c}) where i ∈ {1, 3, 5}

20

Algorithm

The view set computed by our algorithm is minimal

because what it does is:
to retrieve only top-most answers and classify them

and therefore,
• it retrieves only necessary elements, and
• no element appears more than once.

21

Discussion

Efficiency of the Algorithm
1. The number of view queries:

In our algorithm, it grows exponential with:
• the number of given queries (even for non-recursive

queries), and
• the total length of given queries (for recursive queries)

but it is inevitable to minimize the view size.
2. Evaluation cost on the server:

In our experiments,
• we could even reduce the server cost in many cases.

It is because the view queries are more complicated, but
have smaller answers than the original queries.

22

Related Work

• Minimal views for relational queries [Chirkova, Li 03]

redundancy caused by join operations
m

our work: redundancy caused by nested structure of XML

• Reminder query [Dar et al 96]
1. submit Q1, and cache the result
2. given Q2, retrieve only Q2 −Q1

Not always possible to extract Q1 ∩Q2 from the cached Q1
m

our work: given Q1 and Q2,
retrieve Q1 −Q2, Q1 ∩Q2, Q2 −Q1

23

Conclusion

We showed an algorithm to compute a minimal
view for a given set of XPath queries.

Our algorithm works as long as:
1. the fragment is closed under ∪ and−,

• we use those operations to compute view queries
2. it only supports child and descendant axis.

• some axes (e.g. following) make it harder to extract
nesting answers from top-most answers.

24

Future Work

• Efficient evaluation of view queries on the server.
Queries produced by our algorithm have some pattern.
– Q1 −Q2, Q1 ∩Q2, Q2 −Q1

–−Qi//∗
• Interaction with the compression approach.

1. compress answers on the server before sending
2. send the compressed answers
3. decompress on the client

Compression removes redundancy and may offset the
benefit of our approach.

25

