
Online Retweet Recommendation with Item Count Limits

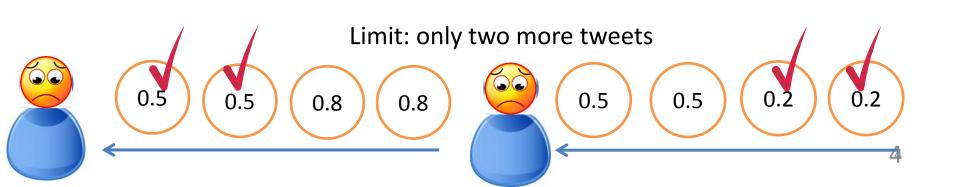
Xiaoqi Zhao, Keishi Tajima Kyoto University

Background

- Portal accounts on Twitter
 - Instead of posting original tweets, these accounts retweet tweets which are useful to their followers.
 - Similar to the portal sites on the web.

Problem

Conditions for good portal accounts:


- 1. Choose tweets that meet followers' interest.
- 2. Retweet timely.
 - Life cycle of a tweet is only 48 hours [Fritz, 2013]
- 3. Retweet an appropriate number of tweets.

A possible solution:

Online Retweet Recommendation with Item Count Limits

Online Retweet Recommendation with Item Count Limits

- Recommend a given number of tweets.
- Recommended tweets cannot be canceled.
- Difficult Point: Trade-off between quality and delay
 - For better selection, we need to know the following tweets.
 - For timely recommendation, we have to make decisions before seeing them.

Previous Work

- Many studies on tweet recommendation
- A few studies on retweet recommendation

E.g.: User oriented tweet ranking: a filtering approach to microblogs [UYSAL, et al., CIKM 2011]

None of them considers the upper bound of the number of tweets to recommend.

Solutions In Our Paper

We propose and compare 4 algorithms:

- Real-time Recommendation (Online)
 - 1. History-Based Threshold Algorithm
 - 2. Stochastic Threshold Algorithm
- Non-real-time Recommendation (Semi-Online)
 - 3. Time-Interval Algorithm
 - 4. Every-k-Tweets Algorithm

Related Problem:

Multiple-choice Secretary Problem [Robert Kleinberg et al. 2005]

Input:

- A sequence of secretaries $T = t_1, t_2, \cdots, t_n$
 - Size of the sequence: n
 - Score $\nu: T \to R^+$
 - C: Number of secretaries to select

Output:

A sequence of selected secretaries 0 ⊆ T
s.t. maximizes v(0) subject to |0| ≤ C

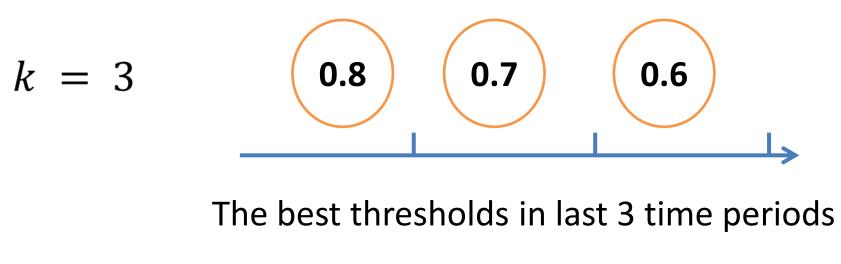
Online Retweet Recommendation with Item Count Limits

Input:

- A sequence of tweets $T = t_1, t_2, \cdots$
 - Size of the sequence: Unknown
 - -Score $v: T \rightarrow [0,1)$
 - C: Item count limit

Output:

• A sequence of selected tweets $0 \subseteq T$ s.t. maximizes v(0) subject to $|0| \leq C$

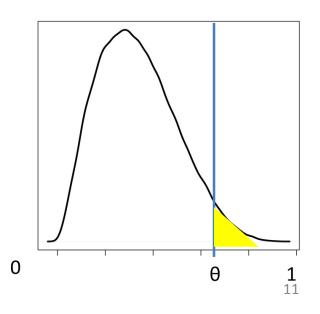

Algorithm Threshold [Kellerer et al. 2004]

Our Algorithms 1 & 2 are based on the following algorithm.

Initialization

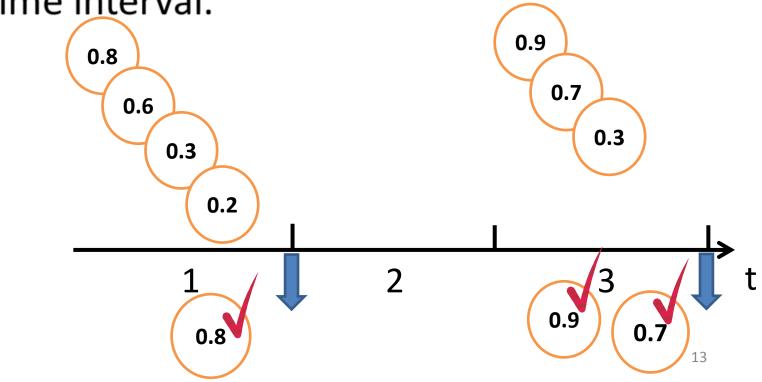
- -0 = an empty sequence
- Initialize Threshold θ
- While a tweet t_i comes in the time period do
 - $|f||O| \leq C$ and $v(t_i) \geq \theta$ then
 - $O = O \cup \{t_i\}$
 - Update θ
- Return O

- 1. History-Based Threshold Algorithm
- We use the average of the best thresholds in pervious k time periods.

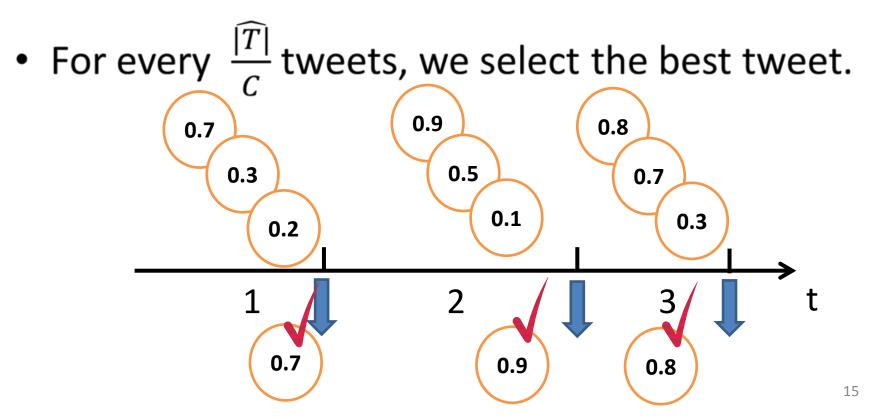

Threshold $\theta = 0.7$

2. Stochastic Threshold Algorithm

Two Assumptions are used to calculate the threshold:


- Scores of incoming tweets $\sim B(x, a, b)$.
- Scores of tweets in a certain period are

random sampled from a given distribution.


3. Time-Interval Algorithm

- Divide a given time period into C sub-intervals.
- Recommend top 1 tweet in each sub-interval.
- If nothing incomes, we carry it over to the next time interval.

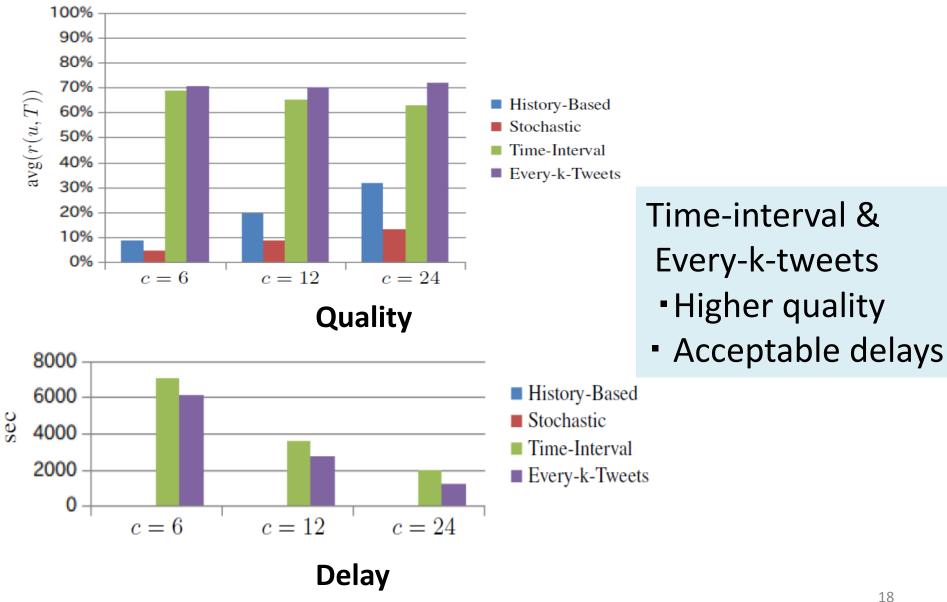
4. Every-k-Tweets Algorithm

 Use the average number |T| of tweets in k pervious time period as the estimated number of incoming tweets.

Experiment follower

- Dataset:
 - 7 portal accounts
 - tweets from their friends and followers
- Item count limits in 24 hours: C = 6, 12, 24
- Evaluate 4 methods:
 - 1. History-Based Threshold Algorithm
 - 2. Stochastic Threshold Algorithm
 - 3. Time-Interval Algorithm
 - 4. Every-k-Tweets Algorithm

Experiment Evaluation


• Quality

– Competitive ratio r :

$$r = \frac{\sum_{t \in O_{online}} v(t)}{\sum_{t \in O_{offline}} v(t)}$$

- Delay
 - Time lag between receiving time and recommendation time

Experiment Result

Experiment Result (Delay)

Delay (sec)	μ	σ	max	min
	c =	6		
Time-Interval	7051	64	14341	103
Every-k-Tweets	6084	90	52241	0
	c =	12		
Time-Interval	3609	45	7199	13
Every-k-Tweets	2716	69	44165	0
	c =	24		
Time-Interval	1946	33	3599	5
Every-k-Tweets	1198	48	32084	0
•		· · · · ·		

- Every-k tweets algorithm is better for the average delay.
- Time-interval algorithm is better for the maximum delay.

Conclusion

- We proposed four retweet recommendation algorithms for portal accounts.
- We tested them with real twitter data.
- The method proposed in the paper can be easily applied to item recommendation for other stream media and some information applications for smartphones.
 - RSS

– Antenna