
Ranking Methods for Query Relaxation in Book Search

Momo Kyozuka and Keishi Tajima Kyoto University, Japan

Background

Book search situation

Approach

Problem

Make new queries by removing wrong keywords

a boy makes paints with blue seeds

→ Cannot know which words are wrong

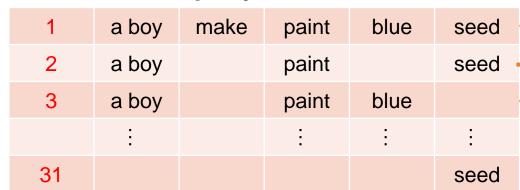
Solution

• Use every subset as a new query

• Rank according to reliability of the subsets

Proposed method

A sentence query from a user In the book,


a boy makes paints with blue seeds.

Generate all subset queries

a boy	make	paint	blue	seed
	make	paint	blue	seed
a boy		paint	blue	seed
:		÷	÷	:
				seed

Rank subset queries based on reliability of query words

Concatenate results

Result of query	1
-----------------	---

- 1. Book 1
- 2. Book 2
- 3. Book 3

Result of query 2

- 1. Book 4
- 2. Book 5
- 3. Book 6

Result of query 3

- 1. Book 7
- 2. Book 8

:

Hypothesis

Reliability of each word depends on its semantic role

- Collect sentence queries from users
- Parse dependencies of the sentence query and classify words into four roles

A sentence query from a user

In the book,

a boy makes paints with blue seeds.

Semantic roles

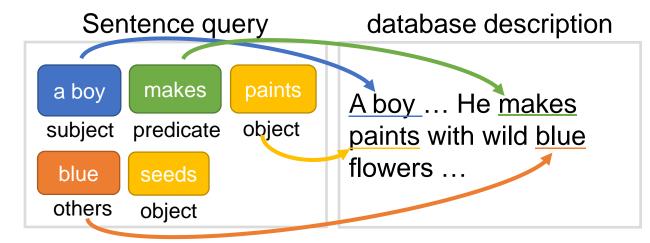
- Subject
- Predicate
- Object
- Others

Classify query words a boy makes paints subject predicate object blue seeds

object

others

Data used in our experiments


- 37 sentence queries by users
 - collected from Yahoo! Chiebukuro (a Japanese popular QA site)
 - question and answer data
 - Q : users asked for titles of books based on vague memories
 - A : questioners found that the answer books were correct

Question	Answer	Comment from questioner
I am searching for a book that I read when I was a child. In the book, a boy makes paints with blue seeds.	<i>y</i>	I checked the web page and I found that the book is what I was searching for. Thank you very much.

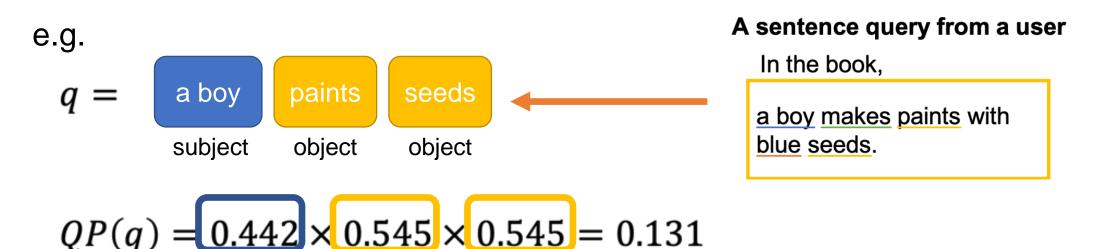
- Correct descriptions of target books
 - collected from the database of National Diet Library of Japan (NDL)

Which semantic role is more reliable?

- Examine whether each word in the sentence queries also appears in the database description
- Calculate the ratio of the appearing words in both descriptions for each of the four roles
- Use each ratio as the probability that a query word in each class also appears in the correct description of the target book

6

class	in user description	in database description	ratio
subject	43	19	0.442
predicate	62	3	0.048
object	55	30	0.545
others	34	15	0.441


The reliability of predicate is lowest

Ranking queries

- Proposed method: Probability Ranking Principle (PRP)
 - Classify query words according to their reliability
 - Rank queries by their reliability
- Baseline 1: Number of Words method
 - Rank queries by number of included words
- Baseline 2: TF-IDF
 - Rank queries by the cosine similarity to the original query in the descending order

Probability Ranking Principle (PRP)

- QP(q): the probability that all words in a generated query q
 appear in the description in the database
 - Defined as the product of the reliability value of each word in the query

- The probability that a word in subject class appears in the correct description is 0.442
- The probability that a word in object class appears in the correct description is 0.545

Probability Ranking Principle (PRP)

- hit(q): the number of search results for the query q
 - ex. hit(q) = 5
- p(q): the probability that each book in the search results is correct
 - Define p(q) as QP(q)/hit(q)
 - ex. p(q) = QP(q)/hit(q) = 0.131/5 = 0.026
- Ranked queries by p(q) in descending order

a boy paints seeds

Search

Number of Search Result: 5

$$QP(q) = 0.131$$

_
p(q) = 0.026

Queries composed

Ranked randomly

Queries composed

Ranked randomly

Baseline 1: Number of Words method

 Rank the queries by the number of included words in the descending order

A sentence query from a user

In the book,

a boy makes paints with blue seeds.

a boy		paints	blue	seeds
a boy	makes		blue	seeds
	makes	paints	blue	seeds
a boy	makes	paints		seeds
a boy	makes	paints	blue	
a boy			blue	seeds
	makes		blue	seeds
i	÷	÷	÷	:
a boy	makes	paints		seeds
a boy	makes	paints	blue	
	a boy a boy a boy a boy :: a boy	a boy makes makes a boy makes a boy makes a boy makes a boy makes iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	a boy makes makes paints a boy makes paints a boy makes paints a boy makes makes iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	a boy makes blue makes paints blue a boy makes paints a boy makes paints blue a boy blue makes blue i i i i a boy makes paints

Baseline 2: TF-IDF

 Queries are ranked by the cosine similarity to the original query in the descending order

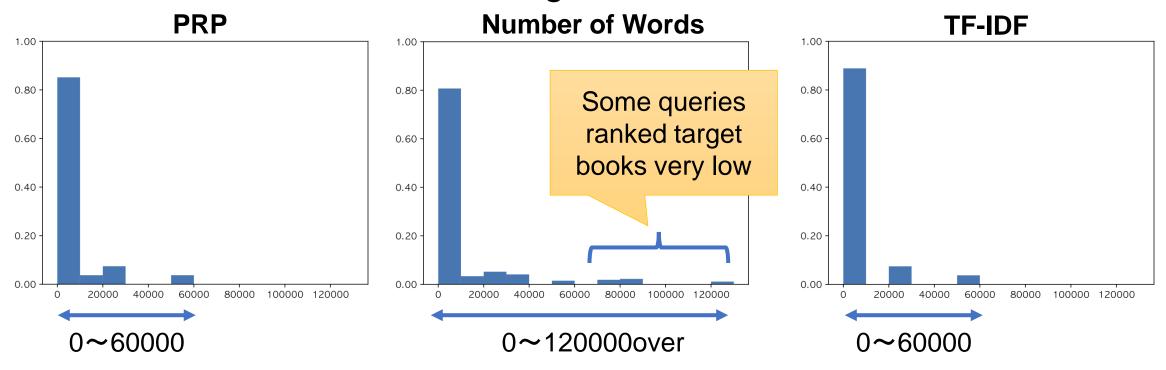
• Ex:
$$q = \begin{bmatrix} a & boy \\ subject \end{bmatrix}$$
 paints seeds

	a boy	makes	paints	blue	seeds
Original	1	1	1	1	1
Subset	1	0	1	0	1

Experiment

- Generate queries with data mentioned in the preliminary experiment
 - Question and answer pairs collected in the Japanese QA site
- Use the NDL search engine to execute generated queries
- Compare results by Mean Reciprocal Rank (MRR) and distribution of the rank of target books
- Number of Words method has a random factor
 - the average of 10 runs

Result (1)


• MRR

PRP	Number of Words	TF-IDF
0.157	0.164	0.121

- → PRP was
 - better than TF-IDF
 - worse than Number of Words method

Result (2)

Distribution of the rank of target books

→ PRP is more stable than Number of Words method

Discussion

- A query has more words
 - the probability that the correct description includes all query words becomes low
 - The result of this query may not contain the target book
- A query has less words
 - The number of search results becomes larger
 - The average rank of the target book becomes lower
- → PRP can control this trade-off appropriately

Conclusion

- Our method consists of two parts
 - 1. Ranking subsets of the original sentence query
 - Classify words in a subset query into 4 semantic roles
 - Use reliability of each query word for ranking queries
 - 2. Concatenating the results of subset queries
- Conduct an experiment to compare ranking methods
 - PRP was better than TF-IDF in MRR
 - PRP was more stable than Number of Words method