
This is the submitted version of the paper. The final revised version is available at: https://doi.org/10.1109/WI.2018.00-51
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Ranking Methods for Query Relaxation in Book Search

Momo Kyozuka
Graduate School of Informatics, Kyoto University

Kyoto, Japan
kyozuka@dl.soc.i.kyoto-u.ac.jp

Keishi Tajima
Graduate School of Informatics, Kyoto University

Kyoto, Japan
tajima@i.kyoto-u.ac.jp

Abstract—This paper proposes a method to support book
search tasks where users only have vague memories of the story
or the contents of the books. Queries produced by users with
such vague memories may include extraneous or even wrong
words, and may not match with the descriptions of the books in
the database. We need some query relaxation scheme to find the
book with such erroneous queries including excessive words.
To develop such a scheme, we first analyze what kind of words
are more likely to be extraneous or wrong in book descriptions
written by users with vague memories. We classify words into
four types based on their roles in the description, and estimate
the probability of their appearance in the database description
for each type. When given a description of a book by a user,
we generate queries by using every subset of the words in the
description, and rank the queries based on expected ranking
of the target book in their results. Expected ranking of the
target book is estimated by using appearance probabilities
of words in queries and the number of books matching the
queries. We conducted an experiment for comparing various
ranking schemes and evaluated their performance by MRR.
The result shows that the ranking scheme that use both the
word appearance probabilities and the number of matching
books outperforms the other schemes.

Index Terms—query relaxation, query correction, query rank-
ing, query suggestion, query recommendation

1. Introduction

Most libraries have a service called “reference service”,
which helps users finding books they are looking for. Some-
times users are looking for a book they read before but do
not remember its title and authors. In that case, the users
describe the contents of the book based on their memory,
and librarians try to find books matching the description.

Some libraries archive questions and answers at their
reference services in the past into a database. For example,
Collaborative Reference Database1 is a database managed
by National Diet Library of Japan, which archives questions
and answers collected from many libraries in Japan. Many
questions in this archive are very vague descriptions of the

1. http://crd.ndl.go.jp/reference/

stories of books the users read long before, e.g., in their
childhood. Similar type of questions are also often found in
QA sites, such as Yahoo! Chiebukuro2, which is the most
popular QA site in Japan.

Libraries also have a database storing brief descriptions
of contents of the books published in the past, and librarians
use the database to identify the books users are looking for.
However, if we simply use the descriptions by the users as
queries on the database, the queries very often do not match
with the correct book. It is because the descriptions are
based on very vague memories of the users and often include
wrong keywords, which does not appear in the description of
the target book in the database. The description by the users
also often include extraneous words that are not wrong but
does not happen to appear in the description in the database.

In this paper, we propose a method to support retrieval
of books by queries produced from a description based
on vague memories of users. Because such queries often
include many words that do not appear in the descriptions
of the target books in the database, we often need to remove
some words from the given query. In other words, we need
some query relaxation scheme that is appropriate in this
scenario. In this paper, we propose a method that generates
relaxed queries by using every subset of the words in the
description by the user, and rank the generated queries.

The outline of our method of ranking generated queries
is as follows. First, each word in the description by the user
is classified into the following four types based on their
roles in the sentences: subject, predicate, object, and others.
For each type, we estimate the probability that a word of
that type in a user description is correct and appears in the
description of the target book in the database. We estimated
it based on the statistics we obtained from the archive of
a QA site. By using these probabilities for each word, we
calculate the probability that each generated query matches
with the description of the target book in the database.

In addition to the probability of matching with the
correct book, we also count the number of matching books
in the database for each query. By using these two, we
calculate the expected rank of the target book in the result
list of each query. We rank queries based on this value, and
we concatenate the result lists of all queries in that order for

2. https://chiebukuro.yahoo.co.jp

producing the final result shown to the user. In this method,
even if a query has high probability of matching with the
target book, if it has a huge number of matching books, the
query may be ranked lower than another query that has lower
probability but has a smaller number of matching books.

In order to evaluate our method, we collected 50 pairs
of a question and an answer from a QA site in Japan where
the question describes a story of a book and the answer
includes the title of a book which is confirmed by the user
as the book she was looking for. We then generated queries
by using the description in the questions, submitted the
queries to the book search system3 provided by National
Diet Library in Japan, and compared the result with several
baseline methods. The result of our experiment shows that
our scheme outperforms other baseline methods.

2. Related Work

There have been much research on query recommen-
dation [1], which is also called query suggestion [2]–[4].
Query suggestion can be classified into several types. The
most general type of query suggestion would suggest any
queries as long as they are chosen by the suggestion method.

On the other hand, there have been much research on
suggestion of additional keywords to the given query, which
is called query completion. (It is also sometimes called
query expansion [5], [6], but the name query expansion
is also used to refer to more general type of query sug-
gestion [7].) Some Web search engines show candidates of
the next keyword when users type query keywords into the
query box. It is an example of query completion [8], [9].

On the other hand, query suggestion removing existing
words from given queries are sometimes called query relax-
ation. There have been much research on query completion,
which add words to given queries, but there have not been
much research on query relaxation for keyword queries
(while there have been much research on query relaxation
for structural queries [10], [11]). It is probably because it is
more difficult for users to come up with additional keywords
than to remove some existing keywords.

Query relaxation is, however, useful when users need
to improve the recall. Query relaxation removes some key-
words or replace some keywords with less restrictive words,
such as their hypernyms. It may also replace some keyword
with a disjunction of all its synonyms. Muslea [12] proposed
a method of finding relaxed non-empty queries that are
closest to a given query that returns empty result.

Our method is also a kind of query relaxation. We focus
on tasks of finding books based on users’ vague memory
of the contents, and analyzed what kind of words are likely
to be missing in the descriptions in the database. We also
propose a novel idea of ranking relaxed queries based on
the expected rank of the correct answer in their results.

Kaneko et al. [13] also proposed a method of query
relaxation. In their method, users can specify the allowance
degree of the replacement of each word in the query. In this

3. http://iss.ndl.go.jp

paper, we assume that users do not know which words may
be wrong, but if that information is available, it must be very
useful for improving the ranking of the relaxed queries. It
is an interesting direction for extending our method.

Many existing methods for query suggestion use the
information on the choices made by users in the past that
are recorded in query logs [1]–[4], [14]. However, we focus
on queries including wrong words because of the vague
memories, and the probability that queries including the
exactly same error exist in the query log is not high. Instead
of using the information on the same queries in query logs,
we assume that the probability of errors have correlation
with the type of words, and we obtain statistics on that from
the archive of questions and answers in the past.

In this paper, we focus on queries produced from a
description of the contents of a book, which usually include
many words. Queries with too many words often cannot pro-
duce appropriate results compared with shorter queries [15].
There have been research on solving the problem of “long
queries” by eliminating extra words and generating shorter
queries that preserves query intents in the original query as
much as possible. Chen and Zhang [16] proposed a method
for producing shorter queries based on query log informa-
tion. We also use the information in the past questions and
answers to rank shorter relaxed queries.

Kumaran and Carvalho [17] and also Balasubramanian,
et al. [18] proposed a method of producing short queries
from long queries by using various estimators of query
quality and learning-to-rank approach with RankSVM [19].
Our method uses the probability that words appear in the
document, which is also a kind of estimator of query quality.

Ochiai et al. [20] conducted an experiment on human
episode memory. They ask users to read news articles, and
later ask them to specify queries for retrieving the articles.
The result shows that the query specified by the users long
after they have read articles include more verbs, and it
degrades the performance of the queries. This result agrees
with our observation that predicates are more likely to be
wrong than subjects and objects.

Kim et al. [21] proposed a method of query suggestion
for academic paper search tasks. Their method extracts
what they call phrasal-concepts, which are subject-specific
phrases used for describing ideas in academic papers. On
the other hand, our method extracts phrases representing the
relationship between two query terms in general documents.

3. Proposed Method

In this section, we explain the details of our method.

3.1. Word Classification

In order to obtain statistics on what type of words in
book descriptions by users are likely to be correct and appear
in the descriptions in the database, we collected 50 pairs of
questions and answers where the correct book was identified.
We collected them from Yahoo! Chiebukuro, a popular QA

TABLE 1. THE RATIO OF WORDS APPEARING IN THE AMAZON DATA

class in questions in database ratio
Subject 48 30 0.625

Predicate 73 12 0.164
Object 65 37 0.569
Others 41 18 0.439

TABLE 2. THE RATIO OF WORDS APPEARING IN THE NDL DATA

class in questions in database ratio
Subject 43 19 0.442

Predicate 62 3 0.048
Object 55 30 0.545
Others 34 15 0.441

site in Japan. We also collected the description of these
books from Amazon.co.jp4 (Amazon) and also from the web
site of National Diet Library of Japan (NDL).

We then extract the main sentence in the description of
the target book written by the user, and classify words in
the sentence into the following four types based on the role
that each word plays in the sentence:

• subjects,
• predicates,
• objects, and
• others.

Predicate is the concept used in Japanese grammar, and it
roughly corresponds to verbs and predicative adjectives.

We then examined whether each word also appears in
the description of the corresponding book obtained from
Amazon and NDL, and calculated the ratio of the appearing
words for each of the four types above. When calculating
it with data from NDL, we excluded 9 books for which we
cannot find description data in NDL.

Table 1 and Table 2 show the result with the data
obtained from Amazon and NDL, respectively. In the de-
scriptions from Amazon, subject appears most frequently,
and objects, others and predicates follows in this order. In
the descriptions from NDL, objects appears most frequently,
and subject, others, and predicates follows in this order. We
use these ratio as the approximation of the probability of
appearance of each type of words in the description in the
database.

3.2. Query Ranking Methods

Given a description of a book written by a user, we
extract the main sentence, and extract nouns, verbs, and
adjectives in it. Next, we produce keyword queries by using
every subset of these words, and rank them. Finally, the
result lists of these queries are concatenated in the order
of the ranking of the queries, and the concatenated list is
shown to the user as the final result of their query.

For ranking the generated queries, we compared the
following 12 ranking methods. The last two are the methods

4. https://www.amazon.co.jp

we propose in this paper, and we compare their performance
with the other 10 methods in the experiment.
Random Repeated Removal

In this method, we produce a ranked list of queries by
starting from the original query, and removing a randomly
chosen word one by one. In this and the next method, we
produce only n−1 queries from the original query including
n words, while we create 2n−1 queries in the other methods.
Priority-based Repeated Removal

In this method, we produced a ranked list of queries
by starting from the original query, and removing a word
with the lowest probability of the appearance one by one,
i.e., in the order of predicates, others, objects, and subjects.
For example, if the query includes a predicate and two
“others” words, the predicate is removed first, then one of
the “others” are randomly chosen and removed, and finally
the remaining “others” is removed.
Random Ranking

We rank all 2n − 1 queries randomly.
Number of Words

In this method, we rank the queries by the number of
included words in the descending order. Queries with the
same number of words are ranked randomly.
Number of Words and Priority

In this method, we rank the queries by the number
of included words in the descending order, and rank the
queries with the same number of words by the appearance
probability of removed words in the ascending order.
Sum of Probability

We rank queries by the sum of the appearance proba-
bility of words in the query in the descending order. For
each type of words, we use the average of appearance
probability for Amazon data and NDL data, i.e., subjects:
0.5335, predicates: 0.106, objects: 0.557, and others: 0.44.
Number of Words and Sum of Probability

We first rank queries by the number of included words in
the descending order, and rank those with the same number
of words by the sum of the probability explained above.
Probability Ranking

Let P (q) denote the probability that all included words
in the query q appear in the description in the database.
We rank queries by P (q) in the descending order. In other
words, we rank queries by the product of probabilities of
words in the queries. In this method, queries with a smaller
number of words tend to be ranked higher.
Number of Words and Probability

We first rank queries by the number of included words in
the descending order, and rank those with the same number
of words by P (q) explained above.
TF-IDF

For each word a included in the original query, we define
its tfidf value as follows:

tfidf (a) = tf (a)× log
N

df (a)

where tf (a) is 1 when the word a is included in a generated
query, and 0 when it is not included, df (a) is the number
of books in the NDL database matching to the query a, and

TABLE 3. EXAMPLES OF WORD CLASSIFICATION

book title description word classification
The Dwarfs
of the
Tree House

A girl is
friendly
with dwarfs

(subject: a girl)
(object: dwarfs)
(predicate: is friendly)

The Scary
and
Dangerous
Excursion

A girl gets
stuck in a
fairy tale
world

(subject: a girl)
(others: a fairy tale)
(object: world)
(predicate: gets stuck)

N is the sum of df (x) for all words extracted from all the
question data.

In this method, we create a tfidf vector whose elements
are tfidf (a) for each original query and each generated
queries, and calculate the cosine similarity between the
vector of the original query and the vector of the generated
query. We rank the generated queries by the similarity to
the original query in the descending order.
Expected Rank of Target

Let hit(q) denote the number of books matching the
query q. We calculate the expected rank of the target book
in the result list of q, denoted by r̂(q), by the formula below:

r̂(q) =
1

2
P (q)hit(q) + (1− P (q))(hit(q) + 1)

In other words, we assume that the target book appears in
the random rank in the query result in the probability P (q),
and appears at the rank hit(q) + 1 (i.e., appear as the item
next to the last item in the result list of q, which is produced
by the query ranked next to q) in the probability 1− P (q).

We rank the queries by r̂(q) in the ascending order.
Number of Words and Expected Rank of Target

We first rank queries by the number of included words in
the descending order, and rank those with the same number
of words by r̂(q) explained above.

4. Experiments

In this section, we explain the experiment we conducted
for comparing the ranking methods. To create a dataset, we
collected 50 question-answer pairs from Yahoo! Chiebukuro
as explained before, and then removed those whose book
do not have the description data in NDL database. We also
removed cases where no words in the description in the
question matches with the description of the target book
in the database. On the other hand, sometimes the target
book in the question has multiple database entries in NDL
database with different description data. In such cases, we
include all the entries in our dataset. As the result, we
obtained data of 27 questions and 37 books.

4.1. Generating and Ranking Queries

Table 3 shows two examples of the main sentences
extracted from the descriptions by users. One of them is
looking for a book whose title is: The Dwarfs of the Tree
House (in Japanese: Kokage No Ie No Kobito Tachi), and
the other is looking for a book whose title is: The Scary

TABLE 4. RANKING OF QUERIES BY EXPECTED RANK OF TARGET
(PROPOSED METHOD 1)

Predicate Others Object Subject
gets stuck a fairy tale
gets stuck a fairy tale world
gets stuck a fairy tale a girl
gets stuck a fairy tale world a girl
gets stuck world a girl
gets stuck a girl

TABLE 5. RANKING OF QUERIES BY NUMBER OF WORDS AND
EXPECTED RANK OF TARGET (PROPOSED METHOD 2)

Predicate Others Object Subject
gets stuck a fairy tale world a girl
gets stuck a fairy tale world
gets stuck a fairy tale a girl
gets stuck world a girl
gets stuck a fairy tale world
gets stuck a fairy tale

and Dangerous Excursion (in Japanese: Ensoku Kowaizo
Abunaizo). Table 3 also shows the classification of words
in the sentences.

Table 4 and Table 5 show examples of a ranking of
queries produced by the proposed methods. Table 6 to
Table 11 also shows examples of query rankings produced
by some of the methods explained in the previous section.
(In Table 4 to Table 11, only the top 6 queries are shown.)

4.2. Executing Queries and Concatenating Results

We executed each generated queries on NDL database
in their ranking order, and recorded the number of books in
their search results. We also examined which query is the
first query that includes the target book in its result, and
recorded the rank of the book in that result.

The multiple keyword search on NDL shows a list of
books whose description data include all the query key-
words. They are listed in the order of relevance uniquely
defined in NDL search system5. When there are more than
500 matching books, they only show the top 500 books as
the search result.

If the description of the target book includes all the query
keywords in the i-th query qi and so the book must be
included in the entire search result of the query, but is not
shown in the top 500, we approximate the rank of the target
book by the rank just at the middle between 500th and the
end of the list. Therefore, we define the expected rank of
the target book in such a case by the following formula:

r̂(qi) =
1

2
(500 + hit i)

where hit i is the number of books matching with qi.
If the target book first matches with the query ranked at

the k-th position in the query ranking, rank , which denotes

5. http://iss.ndl.go.jp/information/faq/#B2

TABLE 6. RANKING OF QUERIES BY
PRIORITY-BASED REPEATED REMOVAL

Predicate Others Object Subject
gets stuck a fairy tale world a girl

a fairy tale world a girl
world a girl

a girl

TABLE 7. RANKING OF QUERIES BY NUMBER
OF WORDS AND PRIORITY

Predicate Others Object Subject
gets stuck a fairy tale world a girl

a fairy tale world a girl
gets stuck a fairy tale a girl
gets stuck a fairy tale world

world a girl
a fairy tale a girl

TABLE 8. RANKING OF QUERIES BY SUM OF
PROBABILITY

Predicate Others Object Subject
gets stuck a fairy tale world a girl

a fairy tale world a girl
gets stuck world a girl
gets stuck a fairy tale world

world a girl
gets stuck a fairy tale a girl

TABLE 9. RANKING OF QUERIES BY NUMBER
OF WORDS AND SUM OF PROBABILITY

Predicate Others Object Subject
gets stuck a fairy tale world a girl

a fairy tale world a girl
gets stuck world a girl
gets stuck a fairy tale world
gets stuck a fairy tale a girl

world a girl

TABLE 10. RANKING OF QUERIES BY
PROBABILITY

Predicate Others Object Subject
world
world a girl

a fairy tale world
a girl

a fairy tale
a fairy tale world a girl

TABLE 11. RANKING OF QUERIES BY NUMBER
OF WORDS AND PROBABILITY

Predicate Others Object Subject
gets stuck a fairy tale world a girl

a fairy tale world a girl
gets stuck world a girl
gets stuck a fairy tale world
gets stuck a fairy tale a girl

world a girl

the rank of the target book in the final result is defined as
follows:

rank =

k−1∑
i=1

hiti + r̂(qk)

where hit i is the number of books matching with the i-th
query and r̂(qk) is the rank of the target book in the search
result of the k-th query. If the target book is not included
in the search results of all the generated queries, the rank
of the target book in the final result is ∞.

If there are multiple data entry with different description
data for the same book in NDL database, we calculated the
rank of each data entry and let the smallest one be the rank
of the target book.

4.3. Evaluation

We compared the 12 ranking methods explained in the
previous section by Mean Reciprocal Rank (MRR), which
is defined by the formula below.

MRR =
1

|Q|

|Q|∑
i=1

1

rank i

|Q| is the number of original questions, which is 27 in this
experiment. rank i is the rank , which is defined before, for
the i-th original query. If the target book matches with no
query generated for the i-th question, 1

ranki
is defined as 0.

Among 12 methods, the Random Repeated Removal
method and the Priority-Based Repeated Removal methods
produce only n− 1 queries among possible 2n − 1 queries.
For these two, we were also interested in the following
question: for how many questions out of 27 questions could
they produce at least one query that matches the target book?
We investigated the answer to this question as well.

For the other 9 methods, we are interested not only
MRR, which is the average performance over all queries,
but also the variance of their performance, in other words,
their robustness. In order to see the variance, we created

TABLE 12. COMPARISON BY MRR

Method MRR
Random Repeated Removal (average) 0.004938272
Simple Repeated Removal 0.098947087
Random Ranking (average) 0.091820651
Random Ranking (worst) 0.000421639
Ranking by Number (average) 0.164337041
Ranking by Number (worst) 0.104480127
Number and Priority 0.152101894
Sum of Probability 0.148613002
Number and Sum of Probability 0.148610991
Probability Ranking 0.044323034
Number and Probability 0.149009630
TF-IDF 0.120593996
Expected Rank of Target 0.156152319
Number of Words and Expected Rank of Target 0.139432412

histograms where horizontal axis represents the rank of the
target book in the final merged query result, and the vertical
axis represents the occurrence frequency ratio of the ranks.

Notice that some methods include random factors. In
order to obtain the average performance of those methods,
we took the average of 5 runs when calculating MRR of
the Random Repeated Removal method and the Random
Ranking method, and took the average of 10 runs when
calculating the Ranking by Number method.

4.4. Result

The MRR of each method is shown in Table 12, and the
histograms showing the variance of the ranking of the target
book are shown in Figure 5 to Figure 10.

First, we compare Random Removal and Priority-Based
Removal methods. The latter achieved 20 times better MRR
than the former. The latter could produce queries matching
with the target book in 10 cases out of 27 questions. On
the other hand, we run the former method 5 times for
each question, and in 2 runs out of 5, the former method
could produce queries matching with the target book only
in one case out of 27 questions, and in 3 runs out of 5,
it could produce matching queries in no case out of 27

questions. These results show that the method that removes
query keywords based on the statistics shown in Table 1
and Table 2 shows far better performance than the random
method.

Next, we compare the other 10 methods by MRR. One
of our proposed method Expected Rank of Target achieved
the second highest MRR among them, but the Ranking by
Number of Words method achieved a slightly better MRR
in average. However, the Ranking by Number of Words
method has larger variance of MRR than our method as
shown in Figure 3 and Figure 11. In other words, our method
is only slightly worse than the Ranking by Number of Words
method in average, but is more stable. In fact, the MRR of
that method in the worst case is far lower than that of our
method as shown in Table 12.

Based on these experimental results, we will discuss
advantages and disadvantages of some method, and also the
future direction for the improvement of some methods.

4.5. Priority-Based Repeated Removal

The Priority-Based Repeated Removal method achieved
far better MRR than the Random Removal method. It is
mainly because the method could produce queries matching
the target book more often than the Random Removal.

However, this method still failed to produce queries
matching the target book for about two thirds of questions.
When the original query contains multiple words of the same
class, those words were randomly ranked in this method.
We could improve this method by using more appropriate
strategy at this step, e.g., considering the order of those
words in the original query.

The inherent shortcoming of this method is that it cannot
produce queries where some words with higher probability
(i.e., lower priority in the removal process) are removed
while some words with lower probability are kept. The result
of our experiment proved that such queries are sometimes
useful, and the methods that do not produce such queries at
all are insufficient.

4.6. Priority Ranking; TF-IDF

MRR of the Number of Words and Priority method
was next to our proposed method. However, the variance
of MRR of this method was large as shown in Figure 5.
In this method, the rank of the target book in the final
result sometimes exceeded 80000. The TF-IDF method also
showed a similar result.

4.7. Sum of Probability; Number and Sum of Prob-
ability

The MRR of these two methods were also close to
that of the best methods. In these methods, queries with
many words tend to be ranked higher. Therefore, the number
of books matching with the highly ranked queries, which
include many words, tend to be small. As a result, if some

of those highly ranked queries matches with the target book,
the rank of the target book is high, and even if some highly
ranked query fail to match with the target book, it does not
drastically lower the rank of the target book as long as it
matches with some of the immediately following queries.

In other words, these ranking methods have a effect that
is very similar to that of our proposed method that uses the
expected rank of the target book.

4.8. Probability Ranking

The MRR of the Probability Ranking method was very
low, even lower than the average of the Random Ranking
method. It is because this method tend to rank queries with
many words lower, because the product of probabilities of
all words become lower when we have many words.

As a result, it has the effect opposite to that of the Sum
of Probability method or the Number and Sum of Probability
method. Queries with a few words, which usually have many
matching books, are ranked higher, and if their results do not
include the target book, the rank of the target book becomes
significantly low even if it matches with the next-ranked
query.

However, the histograms show that the rank of the target
book in the worst case of this method is still higher than
60,000, and it is better than many other methods. It is
because the target book matches with some of the top-ranked
queries in most cases in this method. However, the rank of
the target book is often low simply because those queries
have a large number of matching books, and the target book
often appear in the lower half of them.

4.9. Number of Words and Probability

The MRR of this method is significantly higher than
that of Probability Ranking. It is because we can avoid the
problem explained above by giving priority to queries with
many words.

However, if the description of the target book in the
database has only a few words included in the question, all
queries matching with the target book has only a few words,
and are never ranked high. For such books, this method is
not appropriate. This is a drawback common to all methods
that primarily rank queries by using the number of words.

4.10. Expected Rank of Target; Number of Words
and Expected Rank of Target

The MRR of the former method was the second highest
as mentioned before. When a query has many words, the
probability that the description in the database includes all
of them is low, but if it matches the target book, such queries
with many words can rank the target book at very high rank.
This method can control this trade-off more appropriately
than the other methods by calculating the expected rank of
the target book. The result of the experiment shows that our
strategy aiming that effect really works.

The MRR of the latter method was lower than the
former. In this method, we first rank queries by the number
of included words in the descending order. The query with
many words which does not have the target book in its
search result is ranked higher than the query with less words
which has the target book in its search result. This makes
the target book ranked lower. It is the reason why the MRR
of the latter method was lower.

There are several future directions to improve the ap-
proximation of the expected rank of the target book. For
example, our current method does not consider the rela-
tionship between queries at all. A query can have strong
correlation with other queries, and we can sometimes expect
that the target book not matching with a query q1 is unlikely
to match q2. We may be able to improve the approximation
of the expected rank of the target book by using such a
relationship between queries.

In addition, many queries have overlapping results, and
when we concatenate the result of such queries, we eliminate
the duplicated appearance of the same books. This duplicate
elimination also influence on the expected rank of the target
book. We should also include this factor in the computation.

5. Conclusion

In this paper, we proposed a method of helping users
searching for books based on vague memories of the con-
tents of the book.

First, we collected pairs of questions and answers related
to book search tasks, and obtained statistics on what types of
words that appear in the description by the users are more or
less likely to be correct and to appear also in the description
of the book in the database. We classified words into four
types based on their role in the sentences, and obtained the
statistics for each of them.

We then developed a method of ranking relaxed queries
generated from an original query that may include extrane-
ous words. We also proposed an idea of concatenating the
query results of those queries in the order of their ranking,
and showing the concatenated list to the user as the final
result.

We also developed a query ranking scheme which is
appropriate for this scheme of showing the final result to
users. We estimate the expected rank of the target book in
the final concatenated list, and rank the queries so that we
can minimize the expected rank of the target book. Our
method estimates the expected rank of the target book in
the result of a given query based on the probability that the
result of the query includes the target book, and also the
number of books matching that query.

In this paper, we focused on the book search task, but the
proposed scheme of merging the results of relaxed queries,
and the proposed method of ranking relaxed queries based
on the expected rank of the target data can be applied to a
variety of scenarios where we need to generate many queries
from the original query.

References

[1] R. Baeza-Yates, C. Hurtado, and M. Mendoza, “Query recommenda-
tion using query logs in search engines,” in Proc. of EDBT, 2004, pp.
588–596.

[2] S. Cucerzan and R. W. White, “Query suggestion based on user
landing pages,” in Proc. of SIGIR, 2007, pp. 875–876.

[3] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li, “Context-
aware query suggestion by mining click-through and session data,”
in Proc. of KDD, 2008, pp. 875–883.

[4] M. Shokouhi, M. Sloan, P. N. Bennett, K. Collins-Thompson, and
S. Sarkizova, “Query suggestion and data fusion in contextual dis-
ambiguation,” in Proc. of WWW, 2015, pp. 971–980.

[5] E. N. Efthimiadis, “Query expansion.” ARIST, vol. 31, pp. 121–87,
1996.

[6] C. Carpineto and G. Romano, “A survey of automatic query expansion
in information retrieval,” ACM Comput. Surv., vol. 44, no. 1, pp. 1:1–
1:50, 2012.

[7] H. K. Azad and A. Deepak, “Query expansion techniques for infor-
mation retrieval: a survey,” CoRR, vol. abs/1708.00247, 2017.

[8] S. Whiting and J. M. Jose, “Recent and robust query auto-
completion,” in Pro. of WWW, 2014, pp. 971–982.

[9] G. Di Santo, R. McCreadie, C. Macdonald, and I. Ounis, “Comparing
approaches for query autocompletion,” in Proc. of SIGIR, 2015, pp.
775–778.

[10] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit, “Flexpath: Flex-
ible structure and full-text querying for xml,” in Proc. of SIGMOD,
2004, pp. 83–94.

[11] M. Yahya, D. Barbosa, K. Berberich, Q. Wang, and G. Weikum, “Re-
lationship queries on extended knowledge graphs,” in Proc. WSDM,
2016, pp. 605–614.

[12] I. Muslea, “Machine learning for online query relaxation,” in
Proc. KDD, 2004, pp. 246–255.

[13] Y. Kaneko, S. Nakamura, H. Ohshima, and K. Tanaka, “Query
relaxation based on users’ unconfidences on query terms and web
knowledge extraction,” in Proc. of ICADL, 2008, pp. 71–81.

[14] X. Wang and C. Zhai, “Mining term association patterns from search
logs for effective query reformulation,” in Proce. of CIKM, 2008, pp.
479–488.

[15] M. Bendersky and W. B. Croft, “Analysis of long queries in a large
scale search log,” in Proc. of WSCD, 2009, pp. 8–14.

[16] Y. Chen and Y.-Q. Zhang, “A query substitution-search result refine-
ment approach for long query web searches,” in Proc. of WI-IAT,
2009, pp. 245–251.

[17] G. Kumaran and V. R. Carvalho, “Reducing long queries using query
quality predictors,” in Proc. of SIGIR, 2009, pp. 564–571.

[18] N. Balasubramanian, G. Kumaran, and V. R. Carvalho, “Exploring
reductions for long web queries,” in Proc. of SIGIR, 2010, pp. 571–
578.

[19] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proc. of KDD, 2002, pp. 133–142.

[20] S. Ochiai, M. P. Kato, and K. Tanaka, “Re-call and re-cognition in
episode re-retrieval: A user study on news re-finding a fortnight later,”
in Proc. of CIKM, 2014, pp. 579–588.

[21] Y. Kim, J. Seo, W. B. Croft, and D. A. Smith, “Automatic suggestion
of phrasal-concept queries for literature search,” Information Process-
ing & Management, vol. 50, no. 4, pp. 568–583, 2014.

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 1. Random Ranking (5 runs total)

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 2. Random Ranking (worst)

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 3. Ranking by Number (10 runs total)

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 4. Ranking by Number (worst)

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 5. Ranking by Number and Priority

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 6. Ranking by Sum of Probability

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 7. Ranking by Number and Sum of Prob.

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 8. Probability Ranking

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 9. Ranking by Number and Probability

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 10. TF-IDF

0 20000 40000 60000 80000 100000 120000
0.00

0.20

0.40

0.60

0.80

1.00

Figure 11. Expected Rank of Target

