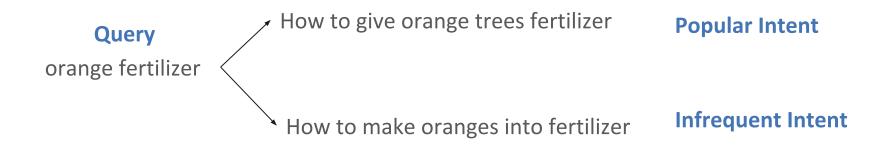
Disjunctive Sets of Phrase Queries for Diverse Query Suggestion


Ziyang Liao, Keishi Tajima Kyoto University

> WI 2019 2019.10.16

Research Background

Many ambiguous queries that can be interpreted in multiple

ways

- Query results are filled with pages corresponding to popular query intents
- Difficult to find queries that can retrieve pages corresponding to infrequent query intents.

Existing method 1

□ Search engines recommend queries extracted from query log

data

• Queries for infrequent intents appear in the query log data only infrequently

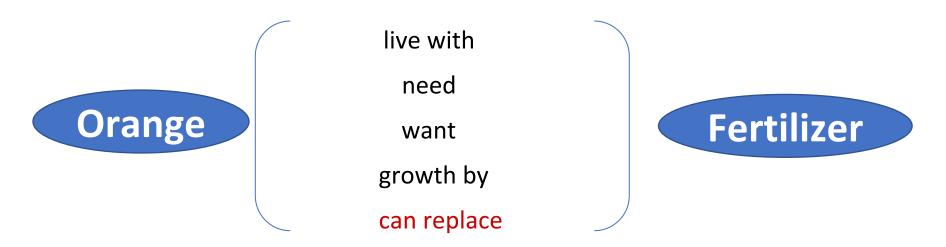
E.g., Bing query recommendation result for "Orange fertilizer"

関連キーワード

orange trees fertilizer

fertilizer for orange trees florida natural fertilizer for orange trees satsuma orange fertilizer best shrub fertilizer types of fertilizers for crops alternatives to nitrogen fertilizer fertilizer plant How to make orange into fertilizer 🗙

How to give orange tree fertilizer



Existing method 2

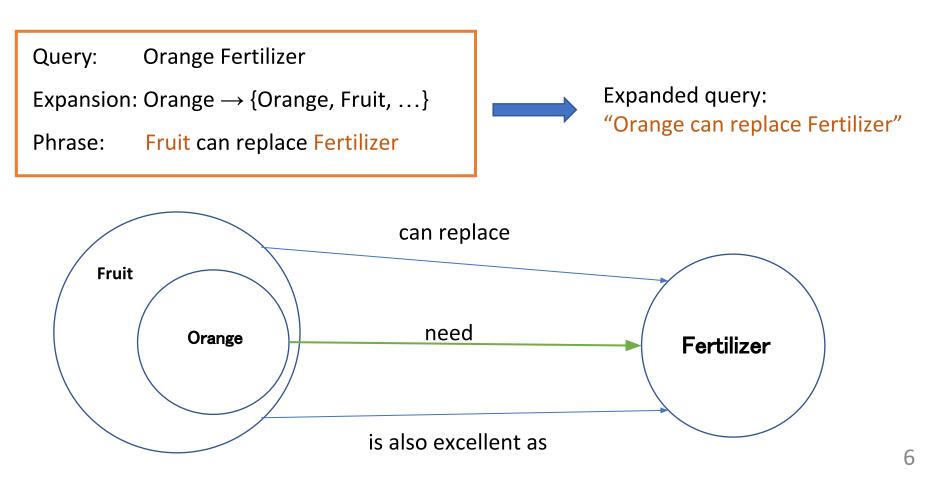
Extract phrases that represent relationships between query

terms from a web corpus [1]

- Web corpus includes more information than query log data
- It is still difficult to find phrases corresponding to infrequent query intents
- Phrases corresponding to infrequent query intents are buried in those corresponding to popular query intents

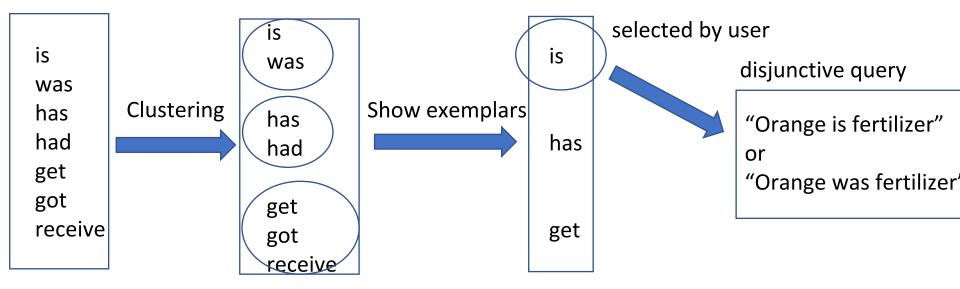
[1] Daisuke Fukuchi, Takehiro Yamamoto, Katsumi Tanaka, Query Mining Based on Term Relationship Estimation in Verbal Queries, Transactions of the Japanese Society for Artificial Intelligence, , 2017, Volume 32, Issue 1, Pages WII-J_1-15,

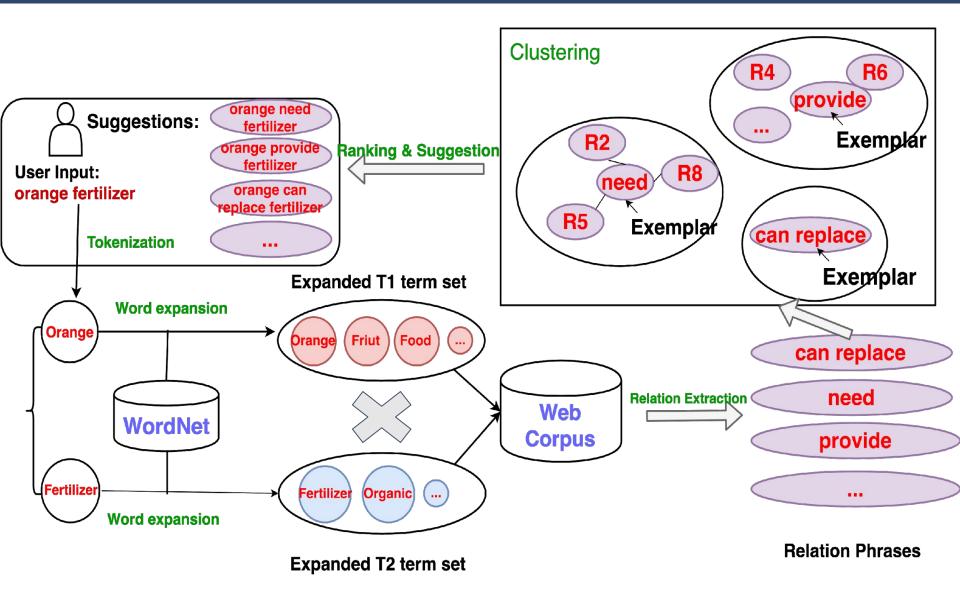
Our Approach 1


Expand query terms using hypernyms, sister terms, and hyponyms

To increase the chance of finding phrases corresponding to infrequent query intents, we expand each query term into the set of its hypernyms, syster terms, and hyponyms.

Our Approach 1 example


- Expand the query term "orange"
- □ Find connecting phrases using all expanded query terms


Approach 2

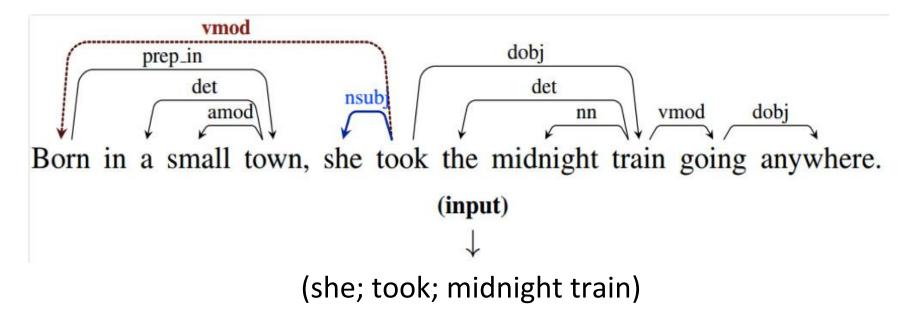
Clustering extracted phrases

- By query term expansion, we obtain many phrases
- Phrases for infrequent intents are buried in those for popular intents
- Cluster related phrases and only show exemplars of the clusters

Overview

Method details

Query term expansion


- WordNet
- Connecting phrase extraction
 - OpenIE (Open information extraction) [2]
- Web corpus
 - ClueWeb
- Clustering algorithm
 - Affinity Propagation algorithm

[2]. Mausam, Pal, H.,&Saha, S. (2017). Bootstrapping for Numerical Open IE. ACL.

Open Information Extraction

Word extraction tool

• OpenIE (Open information extraction)

Data processing procedure

Remove triples with incorrect information

- Triple with typographical errors (eg: apple ai fertilizer)
- 0 results in search engine (eg: apple is computed from fertilizer)

□ Similarity calculation and clustering of related phrases

- Extracting related phrases from the captured relationship triples
- Calculate similarity between related phrases
- Clustering based on similarity

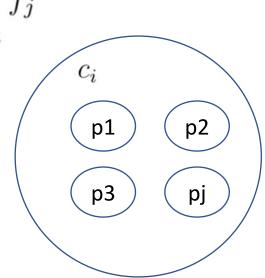
Calculate the overall weight of the cluster and rank

 Score considering the frequency of elements in the cluster and the type of expansion

Clustering algorithm

Affinity Propagation algorithm

- Premise
 - Cluster target: phrases
 - Distance: Value of the semantic similarity between phrases
- Nature
 - Dynamically determines the number of clusters without the need to specify K as in K-means
 - A point to be exemplar is chosen from each cluster


Cluster ranking algorithm

Ranking score

Query: "e1 e2"

$$S(c_i) = w(e_i^1)w(e_i^2)\sum_{p_j \in c_i} f_j$$

- $S(c_i)$ cluster c_i ranking score
- $w(e_i^1)^{-}$ he weight of the expansion type of e1
- $w(e_i^2)$ The weight of the expansion type of e2
- f_j : The frequency of phrase p_j in cluster C_i

Expansion type e	Weight value w(e)
hypernym	1
sister terms	2
itself & hyponym	3

Ranking score calculation example

□ For "orange is fertilizer"

- The connecting phrase "is" is extracted by using "orange" itself and a hypernym of "fertilizer"
- The cluster size of "is" is 10

- $S(c_i)$: cluster c_i 's ranking score
- $w(e_i^1)$: The weight of the expansion type of e1 = 3
- $\bullet w(e_i^2)$: The weight of the expansion type of e2 = 1
- f_j : The frequency of phrase p_j in cluster C_i = 10

$$S(c_i) = w(e_i^1)w(e_i^2) \sum_{p_j \in c_i} f_j = 3*1*10=30$$

Experiment

Procedure

- 1. Prepares queries that have multiple interpretations
- 2. Get query recommendation results
 - Query recommendation results of Google
 - Query recommendation results of Bing
 - Query recommendation results of proposed method
- 3. Search the web by using query recommendation results with Bing and get the top 10 results
- 4. Calculate the precision of the results that match the infrequent intent

Experiment

Test queries

Prepares multiple interpretable queries

Id	Query	Common search intent	Infrequent search intent			
1-1	apple fertilizer	Fertilizer for apple	How to change apple into fertilizer			
1-2	banana fertilizer	Fertilizer for banana	How to change banana into fertilizer			
1-3	orange fertilizer	Fertilizer for orange	How to change orange into fertilizer			
2-1	Kyoto bank	The Kyoto Bank	Information about the banks in Kyoto			
2-2	Japan bank	The Bank of Japan	Information about the banks in Japan			
2-3	China bank	The China Bank	Information about the banks in China			
3-1	Steak sauce	Sauce for steak	How to make sauce using steak			
3-2	Beef sauce	Sauce for beef	How to make sauce using beef			
3-3	Chicken sauce	Sauce for chicken	How to make sauce using chicken			

Evaluation

□ Get query recommendation results

Result of Google query recommendation and proposed method

Google

orange tree fertilizer florida

homemade fertilizer for citrus trees

citrus fertilizer

how often to water orange trees

when to fertilize citrus trees in southern california

citrus fertilizer npk

liquid citrus fertilizer with micronutrientsk

fertilizer production

Proposed method
orange is fertilizer
fertilizer produced orange
fertilizer transported in orange
fertilizer end up in orange
orange contains fertilizer
fertilizer arrow orange
fertilizer pollute orange
fertilizer found in orange
orange has fertilizer
orange made from fertilizer

Not match for infrequent intents

Match for infrequent intents

17

Query recommendation for "orange fertilizer"

Evaluation

Patterns

We calculate the result of following patterns

Patterns

1) Synonym expansion

2) Typeof expansion

3) Instanceof expansion

4) Hastypes expansion

5) Hasinstance expansion

6) Full expansion without expansion type scoring

7) Full expansion with expansion type scoring

Evaluation

Result

Calculate precision of results that match minor intentions

id	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2	3-3
Google	0	0.14	0	0	0.08	0	0	0	0
Bing	0	0.24	0	0.03	0.04	0	0	0.03	0
Original query	0	0	0	0	0.07	0.05	0.02	0	0.03
1) Synonym expansion	0	0	0	0	0	0	0	0	0
2) Typeof expansion	0	0.38	0.05	0	0	0	0	0	0
3) Instanceof expansion	0	0	0	0	0	0	0	0	0
4) Hastypes expansion	0	0	0	0	0	0	0	0	0
5) Hasinstance expansion	0	0	0	0	0	0	0	0	0
6) Full expansion without expansion type scoring	0.05	0.41	0.06	0	0.09	0.07	0.02	0.05	0.03
7) Full expansion with expansion type scoring	0.05	0.41	0.06	0	0.1	0.09	0.03	0.1	0.03

Summary

Propose query expansion method for infrequent query intents

- To obtain more candidate queries, expand the query terms, and extract phrases that connect the two query terms.
- A large number of phrases are extracted from the corpus and clustered to generate diverse phrases.
- Add connecting phrases to the original query and generate query candidates.
- The experimental results show the usefulness of the proposed method.