Next Topic Recommendation for Influencers on Social Media

Masafumi Iwanaga Keishi Tajima Yoko Yamakata

존 Kyoto University 🛛 😤 The University of Tokyo

- This paper is in the Vision Paper track.
- The main goal is to introduce a new task:

Next Topic Recommendation for Influencers

• Also proposes a simple method of next topic recommendation.

What do we mean by "Influencers"?

Our target is "influencers" on social media who:

- have gained popularity
- by posting contents on some specific topic (e.g., video games, TV series).

Such influencers:

 Need to change the (sub)topic periodically before the current topic becomes less popular (e.g., not sticking to one video game for long).

Next Topic Recommendation for Influencers

Problems in Topic Change for Influencers

- 1. Which topic to shift to?
- 2. When to shift?
- 3. How to shift smoothly?

4/12

1. Which topic?

Two factors:

• Popularity over the whole social media

 \rightarrow can expect many new followers.

- Popularity among the current followers
 - \rightarrow can retain many of the current followers.

There often exists the trade-off between these two

5/12

2. When to shift?

- Rich-get-richer effect exists on social media.
- Influencers should change the topic before losing popularity to utilize rich-get-richer effect.

Green: effectively utilizes rich-get-richer effect Red: repeats same process every time it changes topic 3. How to shift smoothly?

• Influencers can mix the old and new topic for a while.

- More posts on the new topic
 - \rightarrow more chances to have posts on the new topic viewed by the current followers.
- Too many posts on the new topic
 - \rightarrow loses the current followers faster.

There exists a trade-off again

Summary of the Task

Task: Next topic recommendation for influencers

- (At least) three problems:
 - 1. Which topic to shift to?
 - 2. When to shift?
 - 3. How to shift smoothly?
- Influencers play important roles in today's economy.
- Little existing academic research.

8/12

Simple Method of Topic Selection

Given a user u who is shifting to a new topic N, our method predicts u's popularity (like/repost) on N.

- 1. collect \boldsymbol{u} 's posts in the past
- 2. remove posts on \boldsymbol{N}
- 3. classify the other posts into 20 old topics O_1, \ldots, O_{20} (k-means on TF-IDF vectors)
- 4. calculate similarity between N and O_i :

 $Sim(N,O_i) = rac{|\{ ext{users posted on both } N, O_i\}|}{|\{ ext{users posted on } O_i\}|}$

Simple Method of Topic Selection

5. calculate the weighted average of the popularity of the u's past posts on O_1, \ldots, O_{20} :

$$E(p) = \sum_i w_i \cdot Sim(N,O_i) \cdot p_i$$

where

 p_i : mean popularity of u's past posts on O_i w_i : fraction of O_i in u's past posts

6. Linear regression on features E(p), #followers, #posts,

Experiment on X (Twitter)

- New topics: 11 video games
- Popularity: the number of likes/reposts
- Baseline: Linear regression w/o *E(p)* but w/ the mean popularity of *u*'s past posts

- Our method:
 - classify the users past posts into 20 old topics,
 - use the user's popularity on each old topic, and
 - their similarity to the new topic as the weight.
- Our method outperforms the baseline when we exclude users whose likes/reports per post is < 3.
- Our target is influencers, and such users are not influencers.

