
' $

A Polymorphic Calculus for

Views and Object Sharing

Atsushi Ohori Keishi Tajima

Kyoto University

University of Tokyo

&

Kyoto University

& %

' $

Backgrounds (1/2)

IS-A Relation in Current OODBs

IS-A relation in current OODBs has two roles.

e.g. Employee IS-A Person:

• method inheritance — a method on Person is also applicable to

Employee objects, and

• extent inclusion — an instance of Employee is also included in a

extent of Person.

These two seem to be ad-hoc approximations to more

fundamental mechanisms of method and object sharing!

1& %

' $

Backgrounds (2/2)

Method Sharing by Polymorphic Type Inference

Polymorphic type inference for records can infer the most general

applicability of the method.

e.g. in Machiavelli[SIGMOD89]:

fun wealthy S = select x·Name from x ∈ S where x·Salary > 100

: {’a::[Name:’b, Salary:int]} →{’b}

This provides us a more precise

framework for method sharing.

2& %

' $

Motivation

Object Sharing by General Predicate

Simple partial ordering is inadequate. e.g.:

“define a new class Foreigner from Student and Employee”

A more direct and natural approach is:

to allow the programmer to specify desired object

sharing predicates between arbitrary classes.

3& %

' $

The Goal of This Work

We develop a framework for

• object sharing by general sharing predicate,

• objects with views,

— to be shared by multiple classes, an object should have

multiple views —

and

• integrate them into a polymorphic type inference system for

method sharing.

4& %

' $

Features of Our Language

1. Classes with Object Sharing

•Class definitions include sharing specifications.

class S include Student as f1 where age > 20

include Employee as fn where age > 20 end

•Recursive class can be defined.

Sharing relation can be cyclic.

2. Objects with Views

•Views are defined by mapping functions

joe = [Name = “joe”, Sex = “male”, BirthY = 1968]

joe as [Name = x·Name, Age = 1994 − x·BirthY]

•Uniform treatment for objects and views

5& %

' $

Our Strategy (1/2)

An “object” is internally an association of

• a raw object — a record that has an identity,

• a viewing function – to map the raw object to its view.

A “class” is internally an association of

• an immediate extent — a set of immediate instances,

• a sharing predicate — a function evaluated dynamically.

6& %

' $

Our Strategy (2/2)

To integrate “objects” with views and “classes” with object sharing

into a polymorphic type system, we

1. define the polymorphic core calculus similar to that of

Machiavelli,

2. extend the core to “objects”, and then to “classes”,

3. define the semantics of the extended language by giving a

translation to the core, and

4. show the translation preserves typing.

7& %

' $

The Core Calculus

e ::= cτ | () | x | eq(e, e) | λx.e | (e e) | fix x.e | let x = e in e end |
[f, . . . , f] | e·l | extract(e, l) | update(e, l, e) |
{e, . . . , e} | union(e, e) | hom(e, e, e, e)

• f in [f, . . . , f] is one of:
l := e : for mutable fields

l = e : for immutable fields

• a record has an identity.

• extract(r, l) extracts the L-value of a mutable l field.

The type system can infer principal type. e.g.

fun wealthy S = select x·Name from x ∈ S where x·Salary > 100

: ∀a::U .∀b::[Name:a, Salary:int].{b}→{a}

8& %

' $

Extension for Objects with Views (1/3)

Expressions, Types, and Typing Rules

e ::= · · · | IDView(e) | (e as e) | query(e, e)

| fuse(e, e) | relobj(l1 = e1, . . . , ln = en)

τ ::= · · · | obj(τ)

(object creation)
K,A � e : τ K ` τ :: [[]]

K,A � IDView(e) : obj(τ)

(view composition)
K,A � e1 : obj(τ1) K,A � e2 : τ1→τ2

K,A � (e1 as e2) : obj(τ2)

(query through view)
K,A � e1 : τ1→τ2 K,A � e2 : obj(τ1)

K,A � query(e1, e2) : τ2

9& %

' $

Extension for Objects with Views (2/3)

Examples of Views

Attribute renaming, hiding, derivation and access control

val joe = IDView([Name = ”Doe”,

BirthY = 1955,

Salary:= 2000,

Bonus := 5000])

: obj([Name = str, BirthY = int, Salary := int, Bonus := int])

val joeview = (joe as λx.[Name = x·Name,

Age = ThisYear - x·BirthY,

Income = x·Salary,

Bonus := extract(x, Bonus)])

: obj([Name = str, Age = int, Income = int, Bonus := int])

10& %

' $

Extension for Objects with Views (3/3)

Examples of Views (cont.)

Query on “objects” with views:

fun annual income p = (p·Income) ∗ 12 + p·Bonus

: ∀a::[[Income = int, Bonus = int]].a→int

query(annual income, joeview)

: int

View update:

fun adjust bonus p = update(p, Bonus, p·Income ∗ 3)

: ∀a::[[Income = int, Bonus := int]].a→()

query(adjust bonus, joeview)

: unit

11& %

' $

Classes and Object Sharing (1/2)

Expressions, Types, and Typing Rules

e ::= · · · | class S include C1
1 , . . . , C

m1
1 as e1 where p1 · · ·

include C1
n, . . . , Cmn

n as en where pn end

| c-query(e, e) | insert(e, e) | delete(e, e)

τ ::= · · · | class(τ)

(cquery)
K,A � e : {obj(τ1)}→τ2 K,A � C : class(τ1)

K,A � c-query(e,C) : τ2

12& %

' $

Classes and Object Sharing (2/2)

Examples of Classes

Staff : class([Name = str, Sex = str, Salary := int])

Student : class([Name = str, Sex = str, Degree := int])

let FemaleMember = class {}
include Staff

as λs.[Name = s·Name, Category = ”staff”]

where λs.(s·Sex = ”female”)

include Student

as λs.[Name = s·Name, Category = ”student”]

where λs.(s·Sex = ”female”) end

: class([Name = str, Category = str])

13& %

' $

Extension for Recursive Definition

We introduce a new construct for recursive definition.

let Staff = class {} include FemaleMember as · · ·
where · · · (select only staffs)

and Student = class {} include FemaleMember as · · ·
where · · · (select only students)

and FemaleMember = class {}
includes Staff as · · ·

where · · · (select only females)

include Student as · · ·
where · · · (select only females)

14& %

' $

Semantics of Recursive Classes

The semantics of recursive definitions can be defined as minimal

solution satisfying constraints.

This can be computed by simple searching with cycle avoidance.

Intuitively, the points are

• cycle of definition occur only in from clauses.

• include clause never produces new identity.

• elements of sets of objects are collapsed using fuse(o1,o2)

15& %

' $

Semantics of the Extended Language

We define the precise semantics by giving a systematic translation:

tr(IDView(e)) = (e, λx.x)

tr((e1 as e2)) = (tr(e1)·1, λx.(e2 (tr(e1)·2 x)))

tr(query(e1, e2)) = (e1 (tr(e2)·2 tr(e2)·1))

tr(class S include C1
1 , . . . , C

m1
1 as e1 where p1 include · · · end)

= [OwnExt:=S, Ext=λ().union(S, union(select · · ·))]
tr(c-query(e,C)) = (tr(e) (tr(C)·Ext ()))

...

16& %

' $

Properties of the Extended Language

The translation preserves typing. By this,

Proposition 1 The type system of the extended language is sound

with respect to the semantics given by the translation.

Furthermore,

Proposition 2 The type system of the extended language can still

infer the principal type for any type consistent expression.

17& %

' $

Conclusions

We have

• developed a framework for object with views and class with object

sharing

• given a precise semantics for them

• integrated those framework with a polymorphic type system

Some further investigations:

• integrate the language with parametric classes with multiple

inheritance for object oriented programming

• abstract characterization of views and classes.

18& %

