Static Detection of Security Flaws in Object-Oriented Databases

Keishi Tajima
Kyoto Univ. & Univ. of Tokyo

T currently at Kobe University
T supported by IISF

Background (1/4)

Database Access

User access to a database 1s either:

e actions to get information from the database, or

e actions to give information to the database.

They are usually represented as read and write operations.

read

———
DB
write

user

Background (2/4)

Need for Control in Abstract Operation Level

e 'To give only partial information on some data.

e 'To allow update of some data only in specific procedure.

4

Function-granularity Access Control

e “One can read this only through this function”

e “One can write this only through this function”

Background (3/4)

Example 1: allowing read operation only through a specific function

A job of checking budgets of stockbrokers:

function checkBudget(broker) =

>=(r_budget(broker), *(10, r salary(broker)))

Background (4/4)

Example 2: allowing write operation only through a specific function

A job of updating salaries of stockbrokers:

function updateSalary(broker) =

w_salary(broker,
calcSalary(r_budget(broker), r_profit(broker)))

Problem

Security flaws in function-granularity access control

“Is that function effectively hiding read /write operations inside it?”

In Ex. 1:

e If one can know budgets of brokers, he can partially infer their salaries.

e If one can change budgets of brokers, he can totally infer their salaries.

In Ex. 2:

e If one can alter budgets of brokers, he can alter their salaries.

(Goal of This Research

e 'To establish a foundation of security analysis for function-granularity
access control.

e To develop a mechanism of static detection of security flaws.

Key Concepts

Inferability and Alterability

Generalization of read /write capability:

e inferability — ability to infer the result of a read operation

e alterability — ability to alter the value written in a write operation

They are effectively equivalent to being able

to read /write directly.

[nferability and Alterability (1/3)

Further generalization:

e inferability — ability to infer the returned value
of a function invocation

e alterability — ability to alter the value of an argument
of a function invocation

They correspond to two kind of capability in

database access through functions.

returned value

A

user m——— f ———] DB

~———

arguments

[nferability and Alterability (2/3)

Classification of inrerability / alterability

e total inferability — ability to infer an exact value

e partial inferability — ability to infer some subsets

e total alterability — ability to alter it to any value in the domain

e partial alterability — ability to alter only within some subdomain

Inferability and Alterability (3/3)

Causality between capability

base cases
e inferability:
1. constants,

2. returned values of functions directly invoked by the user, or

3. arguments of functions directly invoked by the user.

e alterability — arguments of functions directly invoked by the user

causality

e dependency between arguments and returned values of basic functions
® persistence

e alterability can cause inferability (e.g.: >, div, mod)

_

Static Detection of Security Flaws

Basic Strategy

1. Capability List — a set of functions one can invoke.

2. Security Requirement — a set of capability that he should not achieve.

3. We analyze programs of functions and determine whether each user
can achieve specified capability.

User Access through Functions

Syntax of the function definition language

e =clx| file, ..., e)| fale, ..., e) | ratt(e) | w.att(e, €)

Query language

capability list = {r_name, r_age, profile, ...}

select r name(p), profile(p) from p € Person
where r age(p) > 20

Description of Security Requirements

An example of description

(u, rsalary(employee : pa) : ti)

u should not be able to invoke r salary(employee) in the context
where he can achieve

e partial alterability on the argument employee, and

e total inferability on the returned value.

~
Formal Definitions (1/2)

alterability on a; of f(...,a;,...)

E|<f17 © 7fn>

including indirect invocation of f, and

one can alter the value of a; by changing the arguments of fi,..., fn.
inferability on f

(fi(v], .., o) =y, o, falu o) —)

including indirect invocation of f, and

an inference system Z can infer the returned value of it.

y

Formal Definitions (2/2)

Inference system Z

7 models users’ inference on values of expressions in program codes.

term = [(e1,...,en) € S||le1 = e9]

Axioms and inference rules (part)

— () € {c}]
(ai) € {v]}]
:<€17 .oy En, fb(ela Ceey €n>> S {<U17 e 7vnar> | fb(vla e avn>
(€5, e5) € S1), (e, ex) € 59
(€, €5, er) € {{vi,v5,v1) | (v3,v5) € 51, (vj,v1) € Sa}]

—
—

— |

r}]

Program Code Analysis (1/3)

Overview

. We developed an inference system J which syntactically analyzes
program codes and determine what capability users can achieve.

. We compute a closure set of all terms deducable by 7.

. It capability specified in security requirements are included in the
closure set, we determine that there is a security flaw.

Program Code Analysis (2/3)

Inference system J

term = tale| | pale] | tile] | pile] | =le1, e | ...
Inference rule of J (part)

— ti[c]

— talr| (argument of outermost function)

tales] — ta|r att(es)| (if there exists w att(eq, e3))

Rules for basic functions are defined according to their semantics.
e.g.. rules for >= (part)

pile], piles] — ti] >= (e, e2)
tile1), paley], ti[>= (e, e2)] — tileo]

Program Code Analysis (3/3)
An example of analysis

function checkBudget(broker) =
>=(r_budget(broker), *(10, r_salary(broker)))

capability list of u = {checkBudget, w_budget}

security requirement = (u, r salary(broker):ti)

=|v, r_budget(broker)|, tilv] — ti|r_budget(broker)]
—|o, broker|, palv] — palr_budget(broker)]
— tij>=(...)]
ti|r budget(broker)|, palr budget(broker)|, ti|>=(...)]
— ti[*(10, r salary(broker))]
— ti10]
ti[10], ti|*(10, r salary(broker))] — ti|r salary(broker)]

Conclusion

e We propose the concepts of inferability and alterability:.

e We develop a method to statically determine whether given security
requirements are satisfied or not.

Future work

e To include more complex program structures (conditional branch,
recursion)

e More accurate analysis. Dynamic checking.

