
' $

Static Detection of Security Flaws in Object-Oriented Databases

Keishi Tajima

Kyoto Univ. & Univ. of Tokyo

† currently at Kobe University

‡ supported by IISF

& %

' $

Background (1/4)

Database Access

User access to a database is either:

• actions to get information from the database, or

• actions to give information to the database.

They are usually represented as read and write operations.

read

user DB

write

1& %

' $

Background (2/4)

Need for Control in Abstract Operation Level

• To give only partial information on some data.

• To allow update of some data only in specific procedure.

⇓

Function-granularity Access Control

• “One can read this only through this function”

• “One can write this only through this function”

2& %

' $

Background (3/4)

Example 1: allowing read operation only through a specific function

A job of checking budgets of stockbrokers:

function checkBudget(broker) =

>=(r budget(broker), ∗(10, r salary(broker)))

3& %

' $

Background (4/4)

Example 2: allowing write operation only through a specific function

A job of updating salaries of stockbrokers:

function updateSalary(broker) =

w salary(broker,

calcSalary(r budget(broker), r profit(broker)))

4& %

' $

Problem

Security flaws in function-granularity access control

“Is that function effectively hiding read/write operations inside it?”

In Ex. 1:

• If one can know budgets of brokers, he can partially infer their salaries.

• If one can change budgets of brokers, he can totally infer their salaries.

In Ex. 2:

• If one can alter budgets of brokers, he can alter their salaries.

5& %

' $

Goal of This Research

• To establish a foundation of security analysis for function-granularity

access control.

• To develop a mechanism of static detection of security flaws.

6& %

' $

Key Concepts

Inferability and Alterability

Generalization of read/write capability:

• inferability — ability to infer the result of a read operation

• alterability — ability to alter the value written in a write operation

They are effectively equivalent to being able

to read/write directly.

7& %

' $

Inferability and Alterability (1/3)

Further generalization:

• inferability — ability to infer the returned value

of a function invocation

• alterability — ability to alter the value of an argument

of a function invocation

They correspond to two kind of capability in

database access through functions.

returned value

user f DB

arguments
8& %

' $

Inferability and Alterability (2/3)

Classification of inrerability / alterability

• total inferability — ability to infer an exact value

• partial inferability — ability to infer some subsets

• total alterability — ability to alter it to any value in the domain

• partial alterability — ability to alter only within some subdomain

9& %

' $

Inferability and Alterability (3/3)

Causality between capability
base cases

• inferability:

1. constants,

2. returned values of functions directly invoked by the user, or

3. arguments of functions directly invoked by the user.

• alterability — arguments of functions directly invoked by the user

causality

• dependency between arguments and returned values of basic functions

• persistence

• alterability can cause inferability (e.g.: >, div, mod)

10& %

' $

Static Detection of Security Flaws

Basic Strategy

1. Capability List — a set of functions one can invoke.

2. Security Requirement — a set of capability that he should not achieve.

3. We analyze programs of functions and determine whether each user

can achieve specified capability.

11& %

' $

User Access through Functions

Syntax of the function definition language

e ::= c | x | fb(e, . . . , e) | fa(e, . . . , e) | r att(e) | w att(e, e)

Query language

capability list = {r name, r age, profile, . . . }

select r name(p), profile(p) from p ∈ Person

where r age(p) > 20

12& %

' $

Description of Security Requirements

An example of description

(u, r salary(employee : pa) : ti)

u should not be able to invoke r salary(employee) in the context

where he can achieve

• partial alterability on the argument employee, and

• total inferability on the returned value.

13& %

' $

Formal Definitions (1/2)

alterability on ai of f (. . . , ai, . . .)

∃〈f1, . . . , fn〉
including indirect invocation of f , and

one can alter the value of ai by changing the arguments of f1, . . . , fn.

inferability on f

∃〈f1(v
1
1, . . . , v

m
1) → r1, . . . , fn(v1

n, . . . , vm
n) → rn〉

including indirect invocation of f , and

an inference system I can infer the returned value of it.

14& %

' $

Formal Definitions (2/2)

Inference system I

I models users’ inference on values of expressions in program codes.

term ::= [〈e1, . . . , en〉 ∈ S] | [e1 = e2]

Axioms and inference rules (part)

→ [〈c〉 ∈ {c}]
→ [〈aj

i 〉 ∈ {vj
i }]

→ [〈e1, . . . , en, fb(e1, . . . , en)〉 ∈ {〈v1, . . . , vn, r〉 | fb(v1, . . . , vn) = r}]
[〈ei, ej〉 ∈ S1], [〈ej, ek〉 ∈ S2]

→ [〈ei, ej, ek〉 ∈ {〈vi, vj, vk〉 | 〈vi, vj〉 ∈ S1, 〈vj, vk〉 ∈ S2}]

15& %

' $

Program Code Analysis (1/3)

Overview

1. We developed an inference system J which syntactically analyzes

program codes and determine what capability users can achieve.

2. We compute a closure set of all terms deducable by J .

3. If capability specified in security requirements are included in the

closure set, we determine that there is a security flaw.

16& %

' $

Program Code Analysis (2/3)

Inference system J

term ::= ta[e] | pa[e] | ti[e] | pi[e] | =[e1, e2] | . . .

Inference rule of J (part)

→ ti[c]

→ ta[x] (argument of outermost function)

ta[e3] → ta[r att(e2)] (if there exists w att(e1, e3))

Rules for basic functions are defined according to their semantics.

e.g.: rules for >= (part)

pi[e1],pi[e2] → ti[>= (e1, e2)]

ti[e1],pa[e1], ti[>= (e1, e2)] → ti[e2]

17& %

' $

Program Code Analysis (3/3)
An example of analysis

function checkBudget(broker) =

>=(r budget(broker), ∗(10, r salary(broker)))

capability list of u = {checkBudget, w budget}
security requirement = (u, r salary(broker):ti)

...

=[v, r budget(broker)], ti[v] → ti[r budget(broker)]

=[o, broker], pa[v] → pa[r budget(broker)]

→ ti[>=(. . .)]

ti[r budget(broker)], pa[r budget(broker)], ti[>=(. . .)]

→ ti[∗(10, r salary(broker))]

→ ti[10]

ti[10], ti[∗(10, r salary(broker))] → ti[r salary(broker)]

18& %

' $

Conclusion

• We propose the concepts of inferability and alterability.

• We develop a method to statically determine whether given security

requirements are satisfied or not.

Future work

• To include more complex program structures (conditional branch,

recursion)

• More accurate analysis. Dynamic checking.

19& %

