Answering XPath Queries over Networks by Sending Minimal Views

Keishi Tajima Yoshiki Fukui Japan Advanced Institute of Science and Technology (JAIST)

31 Aug. 2004

Problem

Answers to XML Queries Can be Redundant

When issuing a set of queries and getting answer sets ...

- an element may appear in more than one answer set
- an element in one answer set may be a subelement of an answer in another answer set
- an element in one answer set may be a subelement of another answer in the same answer set

Problem

Assumption

Here, we assume:

- Databases are services provided by someone else.
 - All we can do is to submit queries and get answers.
 - No special encodings or protocols can be used.
- Servers provide XPath interface.
 - Full-fledged QLs are too expensive for large-scale services on the Internet.
 - Subtree extraction only. Queries cannot delete redundant parts or embed some markers in the answers.

Our Solution

Example 1

- Q_1 : abstracts of papers with XML in their titles
- Q_2 : entire papers with XML and XPath in their titles

\Downarrow

- V_1 : abstracts of papers with XML but not XPath in the titles
- V_2 : entire papers with XML and XPath in their titles

\Downarrow

The answer to Q_1 is the union of:

- the answer to V_1 , and
- ullet the abstracts extracted from the answer to V_2

Our Solution

Example 2

Q: chapters, sections, ... etc with \mathbf{XML} in their headings

V: chapters, sections, ... etc with XML in their headings, but with no such ancestor

₩

- The answer to V includes all the top-most answers to Q.
- All the other nesting answers can be extracted from them.

 $[\]Downarrow$

Our Solution

- 1. Given Q_1, \ldots, Q_n , the client submits V_1, \ldots, V_m s.t.
 - the answers to Q_1, \ldots, Q_n can be extracted from the answers to V_1, \ldots, V_m , and
 - the total size of the answers to V_1, \ldots, V_m is minimal.

 V_1, \ldots, V_m is a minimal-size view set that can answer all the original queries.

- 2. The server sends the answers.
- 3. The client extracts the final answers from those answers.

The Goal of This Research

We develop an algorithm for computing a minimal-size view set that can answer all the given queries.

Here,

- we consider (a fragment of) XPath,
- we do not consider minimization of the number of queries.

Organization of the Rest of the Presentation

- 1. XPath fragment we use
- 2. more examples and intuitions behind the algorithm
- 3. the algorithm
- 4. related work
- 5. conclusion

Preliminary

A Fragment of XPath

 $q ::= /p \mid //p \mid q \cup q \mid q - q$

 $p ::= a \mid \overline{\{a_1, \ldots, a_n\}} \mid \ st \mid p/p \mid p//p \mid p[p] \mid p\overline{[p]}$

e.g.

- /a/b[c]
- $//a/\{b\}$

Example 1: Non-Recursive Queries of the Same Length

Given:

then, we submit:

$$egin{array}{lll} V_{1-2}: \ /a/c/d \ V_{1\cap 2}: \ /a/\overline{ blacktrue b,c}/d \ V_{2-1}: \ /a/b/d \end{array}$$

$$egin{aligned} Q_1 &\leftarrow (V_{1-2}, \ / \texttt{Ans}/*) \ Q_1 &\leftarrow (V_{1\cap 2}, \ / \texttt{Ans}/*) \ Q_2 &\leftarrow (V_{1\cap 2}, \ / \texttt{Ans}/*) \ Q_2 &\leftarrow (V_{2-1}, \ / \texttt{Ans}/*) \end{aligned}$$

Example 1: Non-Recursive Queries of the Same Length

Given:

$$Q_1: \slash a / \overline{\{b\}} / d \ Q_2: \slash a / \overline{\{c\}} / d$$

then, we submit:

$$igg| egin{array}{ll} V_{1-2}: \ /a/c/d \ V_{1\cap 2}: \ /a/\overline{\{{ b,c}\}}/d \ V_{2-1}: \ /a/b/d \end{array}$$

$$\leftarrow Q_1 - Q_2 \ \leftarrow Q_1 \cap Q_2 \ \leftarrow Q_2 - Q_1$$

$$egin{aligned} Q_1 &\leftarrow (V_{1-2}, \ / \texttt{Ans}/*) \ Q_1 &\leftarrow (V_{1\cap 2}, \ / \texttt{Ans}/*) \ Q_2 &\leftarrow (V_{1\cap 2}, \ / \texttt{Ans}/*) \ Q_2 &\leftarrow (V_{2-1}, \ / \texttt{Ans}/*) \end{aligned}$$

Example 1: Non-Recursive Queries of the Same Length

Given Q_1, \ldots, Q_n of the same length, $\{V(S) \mid S \neq \emptyset, \ S \subset \{1, \dots, n\}\}$ is a minimal view set, where $V(S) = igcap_{i \in S} Q_i - igcup_{i \in \{1, \dots, n\} - S} Q_i$ and we need $Q_i \leftarrow (V(S), /Ans/*)$ for $i \in S$ Q_1 Q_2 3 V(S) correspond to the regions in the Venn diagram. Q_3

Example 2: Non-Recursive Queries of Different Length

Given:

then, we submit:

 $\left\{egin{array}{ll} V_{1-2}:\ /a/c/d\ V_{1\cap 2}:\ /a/\overline{\{b,c\}}/d\ V_{2-1}:\ /a/b/d/e \end{array}
ight.$

$$egin{aligned} Q_1 &\leftarrow (V_{1-2}, \ / extsf{Ans}/*) \ Q_1 &\leftarrow (V_{1\cap 2}, \ / extsf{Ans}/*) \ Q_2 &\leftarrow (V_{1\cap 2}, \ / extsf{Ans}/*/e) \ Q_2 &\leftarrow (V_{2-1}, \ / extsf{Ans}/*) \end{aligned}$$

Example 2: Non-Recursive Queries of Different Length

Given:

 $egin{cases} Q_1:/a/\overline{fbackslash}/d\ Q_2:/a/ackslash cfbackslash cfbackslash$

then, we submit:

$$\begin{cases} V_{1-2} : /a/c/d & \leftarrow Q_1 - \operatorname{pre}(Q_2) \\ V_{1\cap 2} : /a/\overline{\{\mathsf{b},\mathsf{c}\}}/d & \leftarrow Q_1 \cap \operatorname{pre}(Q_2) \\ V_{2-1} : /a/b/d/e & \leftarrow (\operatorname{pre}(Q_2) - Q_1).\operatorname{suf}(Q_2) \end{cases}$$

and produce the final answers:

$$egin{aligned} Q_1 &\leftarrow (V_{1-2}, \ / extsf{Ans}/*) \ Q_1 &\leftarrow (V_{1\cap 2}, \ / extsf{Ans}/*) \ Q_2 &\leftarrow (V_{1\cap 2}, \ / extsf{Ans}/*/ extsf{e}) &\leftarrow extsf{suffix}(Q_2 \ Q_2 &\leftarrow (V_{2-1}, \ / extsf{Ans}/*) \end{aligned}$$

 $\left(\begin{array}{c} \operatorname{pre}(Q_2) = /a/\overline{\{c\}}/d \\ \operatorname{suf}(Q_2) = /e \end{array} \right)$

Example 3: A Single Recursive Query

Given:

 $\{ \ Q: \textit{//a/b/*/b}$

then, we submit:

 $\left\{ \begin{array}{ll} V_1: //a/b/a/b & -//a/b/*/b//* \\ V_2: //a/b/\overline{\{a\}}/b & -//a/b/*/b//* \end{array} \right. \label{eq:V1}$

$$egin{aligned} Q &\leftarrow (V_1, /\mathsf{Ans}/*) \ Q &\leftarrow (V_2, /\mathsf{Ans}/*) \ Q &\leftarrow (V_1, /\mathsf{Ans}//a/b/*/b) \ Q &\leftarrow (V_2, /\mathsf{Ans}//a/b/*/b) \ Q &\leftarrow (V_1, /\mathsf{Ans}//a/b/*/b) \end{aligned}$$

Example 3: A Single Recursive Query

Given:

 $\{ Q: //a/b/*/b$

then, we submit:

 $\begin{cases} V_1 : //a/b/a/b & -//a/b/*/b//* \\ V_2 : //a/b/\overline{a}/b & -//a/b/*/b//* & to retrieve only \\ top-most answers \end{cases}$

$$egin{aligned} Q &\leftarrow (V_1, /\mathsf{Ans}/*) \ Q &\leftarrow (V_2, /\mathsf{Ans}/*) \ Q &\leftarrow (V_1, /\mathsf{Ans}//a/b/*/b) \ Q &\leftarrow (V_2, /\mathsf{Ans}//a/b/*/b) \ Q &\leftarrow (V_1, /\mathsf{Ans}/*/b/*/b) \end{aligned}$$

Example 3: A Single Recursive Query

Given:

 $\{ Q: //a/b/*/b \qquad (\operatorname{pre}(Q) = //a/b, \ \operatorname{suf}(Q) = /*/b)$

then, we submit:

 $\begin{bmatrix} V_1 : //a/b/a/b & -//a/b/*/b//* & \leftarrow Q \cap \operatorname{pre}(Q) \\ V_2 : //a/b/\overline{\{a\}}/b & -//a/b/*/b//* & \leftarrow Q - \operatorname{pre}(Q) \end{bmatrix}$

$$Q \leftarrow (V_1, /Ans/*)$$

$$Q \leftarrow (V_2, /Ans/*)$$

$$Q \leftarrow (V_1, /Ans//a/b/*/b)$$

$$Q \leftarrow (V_2, /Ans//a/b/*/b)$$

$$Q \leftarrow (V_1, /Ans/*/*/b) \leftarrow suf(Q)$$

Input:

$$\begin{cases} Q_1: / \frac{1}{1} \ p_1^1 \ / \frac{2}{1} \ p_1^2 \ \dots \ / \frac{l_1}{1} \ p_1^{l_1} \\ \vdots \\ Q_n: / \frac{1}{n} \ p_n^1 \ / \frac{2}{n} \ p_n^2 \ \dots \ / \frac{l_n}{n} \ p_n^{l_n} \end{cases}$$
(each $/ \frac{j}{i}$ is either / or //)

Output:

- a set of view queries $\{V_1, \ldots, V_m\}$, and
- a set of triplets of the form $Q_i \leftarrow (V_j, q_i^j)$

Main Routine

- 1. For every S, T, s.t.:
 - $ullet S\subseteq\{1,\ldots,n\}, \ S
 eq \emptyset$
 - $\bullet T \subseteq \{(i,j) \mid 1 \leq i \leq n, \ 0 \leq j \leq l_i 1\}$

create a view query V(S,T):

$$(igcap_{i \in S} Q_{i} - igcup_{i
otin S} Q_{i}) \cap (igcap_{(i,j) \in T} pp_{i}^{j} - igcup_{(i,j)
otin T} pp_{i}^{j}) - igcup_{1 \le i \le n} Q_{i} / / *$$

2. For each V(S,T), create triplets: $Q_i \leftarrow (V(S,T), /Ans/*)$ for $i \in S$ $Q_i \leftarrow (V(S,T), /Ans/*/_i^{j+1}p_i^{j+1} \dots / _i^{l_i}p_i^{l_i})$ for $(i,j) \in T$

Main Routine

- 1. For every S, T, s.t.:
 - $ullet S\subseteq\{1,\ldots,n\}, \ S
 eq \emptyset$
 - $T \subseteq \{(i,j) \mid 1 \leq i \leq n, \ 0 \leq j \leq l_i 1\}$

create a view query V(S,T):

$$(\bigcap_{i \in S} Q_i - \bigcup_{i \notin S} Q_i) \cap (\bigcap_{(i,j) \in T} pp_i^j - \bigcup_{(i,j) \notin T} pp_i^j) - \bigcup_{1 \le i \le n} Q_i // *$$

classifying elements based on which Q_i it matches

Main Routine

- 1. For every S, T, s.t.:
 - $ullet S\subseteq\{1,\ldots,n\}, \ S
 eq \emptyset$
 - $ullet T\subseteq \{(i,j) \mid 1\leq i\leq n, \ 0\leq j\leq l_i-1\}$

create a view query V(S,T):

$$(\bigcap_{i \in S} Q_i - \bigcup_{i \notin S} Q_i) \cap (\bigcap_{(i,j) \in T} pp_i^j - \bigcup_{(i,j) \notin T} pp_i^j) - \bigcup_{1 \le i \le n} Q_i // *$$

classifying elements based on which prefixes it matches

Main Routine

1. For every S, T, s.t.:

- $ullet S \subseteq \{1,\ldots,n\}, \ S
 eq \emptyset$
- $ullet T \subseteq \{(i,j) \mid 1 \leq i \leq n, \ 0 \leq j \leq l_i 1\}$

create a view query V(S,T):

$$(\bigcap_{i \in S} Q_i - \bigcup_{i \notin S} Q_i) \cap (\bigcap_{(i,j) \in T} pp_i^j - \bigcup_{(i,j) \notin T} pp_i^j) - \bigcup_{1 \leq i \leq n} Q_i // *$$

to only retrieve the top-most answers

Main Routine

- 1. For every S, T, s.t.:
 - $ullet S\subseteq\{1,\ldots,n\}, \ S
 eq \emptyset$
 - $\bullet T \subseteq \{(i,j) \mid 1 \leq i \leq n, \ 0 \leq j \leq l_i 1\}$

create a view query V(S,T):

$$(igcap_{i \in S} Q_{i} - igcup_{i
otin S} Q_{i}) \cap (igcap_{(i,j) \in T} pp_{i}^{j} - igcup_{(i,j)
otin T} pp_{i}^{j}) - igcup_{1 \le i \le n} Q_{i} / / *$$

2. For each V(S,T), create triplets: $Q_i \leftarrow (V(S,T), /Ans/*)$ for $i \in S$ $Q_i \leftarrow (V(S,T), /Ans/*/_i^{j+1}p_i^{j+1} \dots / _i^{l_i}p_i^{l_i})$ for $(i,j) \in T$

An Example

For example, given:

 $egin{cases} Q_1://a\ Q_2:/b//iggreecember \{ c \} \end{cases}$

Then,

$$\left\{egin{array}{l} pp_1^0 = /\!/st\ pp_2^0 = \emptyset\ pp_2^1 = /\! f b \cup /\! f b/\!/st \end{array}
ight.$$

• Views for T including pp_2^0 or not including pp_1^0 are empty.

• $\cap pp_1^0$ and $-pp_2^0$ can be omitted.

An Example

Views:

$$egin{aligned} V_1: (Q_1 \cap Q_2) \cap pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \ V_2: (Q_1 \cap Q_2) - pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \ V_3: (Q_1 - Q_2) \cap pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \ V_4: (Q_1 - Q_2) - pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \ V_5: (Q_2 - Q_1) \cap pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \ V_6: (Q_2 - Q_1) - pp_2^1 - (Q_1/\!/* \cup Q_2/\!/*) \end{aligned}$$

Triplets:

 $\begin{array}{ll} Q_1 \leftarrow (V_i, // \mathsf{Ans}/*) & \text{where } i \in \{1, 2, 3, 4\} \\ Q_2 \leftarrow (V_i, // \mathsf{Ans}/*) & \text{where } i \in \{1, 2, 5, 6\} \\ Q_1 \leftarrow (V_i, // \mathsf{Ans}/*// a) & \text{where } i \in \{1, 2, 3, 4, 5, 6\} \\ Q_2 \leftarrow (V_i, // \mathsf{Ans}/*// \{\mathsf{C}\}) & \text{where } i \in \{1, 3, 5\} \end{array}$

The view set computed by our algorithm is minimal

because what it does is:

to retrieve only top-most answers and classify them

and therefore,

- it retrieves only necessary elements, and
- no element appears more than once.

Discussion

Efficiency of the Algorithm

1. The number of view queries:

In our algorithm, it grows exponential with:

- the number of given queries (even for non-recursive queries), and
- the total length of given queries (for recursive queries) but it is **inevitable** to minimize the view size.
- **2. Evaluation cost on the server:**
 - In our experiments,
 - we could even reduce the server cost in many cases.

It is because the view queries are more complicated, but have smaller answers than the original queries.

Related Work

- Reminder query [Dar et al 96]
 - 1. submit Q_1 , and cache the result
 - 2. given Q_2 , retrieve only $Q_2 Q_1$

Not always possible to extract $Q_1 \cap Q_2$ from the cached Q_1 \uparrow our work: given Q_1 and Q_2 , retrieve $Q_1 - Q_2, Q_1 \cap Q_2, Q_2 - Q_1$

Conclusion

We showed an algorithm to compute a minimal view for a given set of XPath queries.

Our algorithm works as long as:

- 1. the fragment is closed under \cup and -,
 - we use those operations to compute view queries
- 2. it only supports child and descendant axis.
 - some axes (e.g. following) make it harder to extract nesting answers from top-most answers.

Future Work

• Efficient evaluation of view queries on the server. Queries produced by our algorithm have some pattern.

$$-Q_1 - Q_2, Q_1 \cap Q_2, Q_2 - Q_1 \ - -Q_i //*$$

- Interaction with the compression approach.
 - 1. compress answers on the server before sending
 - 2. send the compressed answers
 - 3. decompress on the client

Compression removes redundancy and may offset the benefit of our approach.