Answering XPath Queries over Networks by Sending Minimal Views

Keishi Tajima Yoshiki Fukui
Japan Advanced Institute of Science and Technology (JAIST)

31 Aug. 2004

Target

XML Information Services on networks

- On-line XML databases

- Subscription Systems register a set of queries

answer sets (on Week 1) answer sets (on Week 2)

Problem

Answers to XML Queries Can be Redundant

When issuing a set of queries and getting answer sets ...

- an element may appear in more than one answer set
- an element in one answer set may be a subelement of an answer in another answer set
- an element in one answer set may be a subelement of another answer in the same answer set

Problem

Example 1

Q_{1} : abstracts of papers including XML in their titles Q_{2} : entire papers including XML and XPath in their titles

Communication cost is not optimal

Problem

Example 2

$Q:$ chapters, sections, . . . etc including XML in the headings

Communication cost is not optimal even with a single query

Problem

Assumption

Here, we assume:

- Databases are services provided by someone else.
- All we can do is to submit queries and get answers.
- No special encodings or protocols can be used.
- Servers provide XPath interface.
- Full-fledged QLs are too expensive for large-scale services on the Internet.
- Subtree extraction only. Queries cannot delete redundant parts or embed some markers in the answers.

Our Solution

Example 1

Q_{1} : abstracts of papers with XML in their titles Q_{2} : entire papers with XML and XPath in their titles

$$
\Downarrow
$$

V_{1} : abstracts of papers with XML but not XPath in the titles V_{2} : entire papers with XML and XPath in their titles
\Downarrow
The answer to Q_{1} is the union of:

- the answer to V_{1}, and
- the abstracts extracted from the answer to V_{2}

Our Solution

Example 2

Q: chapters, sections, . . etc with XML in their headings
\Downarrow
V : chapters, sections, ... etc with XML in their headings, but with no such ancestor
\Downarrow

- The answer to V includes all the top-most answers to Q.
- All the other nesting answers can be extracted from them.

Our Solution

1. Given Q_{1}, \ldots, Q_{n}, the client submits V_{1}, \ldots, V_{m} s.t.

- the answers to Q_{1}, \ldots, Q_{n} can be extracted from the answers to V_{1}, \ldots, V_{m}, and
- the total size of the answers to V_{1}, \ldots, V_{m} is minimal.

$$
\begin{aligned}
& V_{1}, \ldots, V_{m} \text { is a minimal-size view set } \\
& \text { that can answer all the original queries. } \\
& \hline
\end{aligned}
$$

2. The server sends the answers.
3. The client extracts the final answers from those answers.

The Goal of This Research

We develop an algorithm for computing a minimal-size view set that can answer all the given queries.

Here,

- we consider (a fragment of) XPath,
- we do not consider minimization of the number of queries.

Organization of the Rest of the Presentation

1. XPath fragment we use
2. more examples and intuitions behind the algorithm
3. the algorithm
4. related work
5. conclusion

Preliminary

A Fragment of XPath

$$
\begin{aligned}
q & :=|p| / p|q \cup q| q-q \\
p & ::=a\left|\overline{\left\{a_{1}, \ldots, a_{n}\right\}}\right| *|p / p| p / / p|p[p]| p[\overline{[p]}
\end{aligned}
$$

e.g.

Preliminary

A Fragment of XPath

$$
\begin{aligned}
q & ::=/ p|/ / p| q \cup q \mid q-q \\
p & ::=a\left|\overline{\left\{a_{1}, \ldots, a_{n}\right\}}\right| *|p / p| p / / p|p[p]| p[\overline{[p]}
\end{aligned}
$$

e.g.

- /a/b[c]
- //a/ $\overline{\mathbf{b}\}}$

Preliminary

A Fragment of XPath

$$
\begin{aligned}
q & ::=/ p|/ / p| q \cup q \mid q-q \\
p & ::=a\left|\overline{\left\{a_{1}, \ldots, a_{n}\right\}}\right| *|p / p| p / / p|p[p]| p[\overline{[p]}
\end{aligned}
$$

e.g.

- /a/b[c]
- //a/\{b\}

Example 1: Non-Recursive Queries of the Same Length

Given:

$$
\left\{\begin{array}{l}
Q_{1}: / a / \overline{\{b\}} / d \\
Q_{2}: / a / \mathbf{\{ c \}} / d
\end{array}\right.
$$

then, we submit:

$$
\left\{\begin{array}{l}
V_{1-2}: / a / c / d \\
V_{1 \cap 2}: / a /\{b, c\} / d \\
V_{2-1}: / a / b / d
\end{array}\right.
$$

and produce the final answers:

$$
\begin{aligned}
& Q_{1} \leftarrow\left(V_{1-2}, / \mathrm{Ans} / *\right) \\
& Q_{1} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{2-1}, / \mathrm{Ans} / *\right)
\end{aligned}
$$

Example 1: Non-Recursive Queries of the Same Length

Given:

$$
\left\{\begin{array}{l}
Q_{1}: / a / \overline{\{b\}} / d \\
Q_{2}: / a / \overline{\{c\}} / d
\end{array}\right.
$$

then, we submit:

$$
\begin{cases}V_{1-2}: / \mathrm{a} / \mathrm{c} / \mathrm{d} & \leftarrow Q_{1}-Q_{2} \\ V_{1 \cap 2}: / \mathrm{a} /\{\mathrm{b}, \mathrm{c}\} / \mathrm{d} & \leftarrow Q_{1} \cap Q_{2} \\ V_{2-1}: / \mathrm{a} / \mathrm{b} / \mathrm{d} & \leftarrow Q_{2}-Q_{1}\end{cases}
$$

and produce the final answers:

$$
\begin{aligned}
& Q_{1} \leftarrow\left(V_{1-2}, / \mathrm{Ans} / *\right) \\
& Q_{1} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{2-1}, / \mathrm{Ans} / *\right)
\end{aligned}
$$

Example 1: Non-Recursive Queries of the Same Length

Given $Q_{1}, \ldots, Q_{\boldsymbol{n}}$ of the same length,

$$
\{V(S) \mid S \neq \emptyset, S \subseteq\{1, \ldots, n\}\}
$$

is a minimal view set, where

$$
V(S)=\bigcap_{i \in S}^{\cap} Q_{i}-\underset{i \in\{1, \ldots, n\}-S}{\cup} Q_{i}
$$

and we need

$$
Q_{i} \leftarrow(V(S), / A n s / *) \text { for } i \in S
$$

$V(S)$ correspond to the
regions in the Venn diagram.

Example 2: Non-Recursive Queries of Different Length

Given:

$$
\left\{\begin{array}{l}
Q_{1}: / a / \overline{\{b\}} / d \\
Q_{2}: / a /\{\overline{\{c\}} / d / e
\end{array}\right.
$$

then, we submit:

$$
\begin{aligned}
& V_{1-2}: / a / c / d \\
& V_{1 \cap 2}: / a /\{b, c\} / d \\
& V_{2-1}: / a / b / d / e
\end{aligned}
$$

and produce the final answers:

$$
\begin{aligned}
& Q_{1} \leftarrow\left(V_{1-2}, / \mathrm{Ans} / *\right) \\
& Q_{1} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / * / \mathrm{e}\right) \\
& Q_{2} \leftarrow\left(V_{2-1}, / \mathrm{Ans} / *\right)
\end{aligned}
$$

Example 2: Non-Recursive Queries of Different Length

Given:

$$
\left\{\begin{array}{l}
Q_{1}: / a / \overline{\{b\}} / d \\
Q_{2}: / a /\{c\} / d / e
\end{array}\right.
$$

$$
\left(\begin{array}{l}
\operatorname{pre}\left(Q_{2}\right)=/ \mathbf{a} / \overline{\{\mathbf{c}\}} / \mathrm{d} \\
\operatorname{suf}\left(Q_{2}\right)=/ \mathrm{e}
\end{array}\right.
$$

then, we submit:

$$
\begin{array}{ll}
V_{1-2}: / \mathrm{a} / \mathrm{c} / \mathrm{d} & \leftarrow Q_{1}-\operatorname{pre}\left(Q_{2}\right) \\
V_{1 \cap 2}: / \mathrm{a} /\{\mathrm{b}, \mathrm{c}\} / \mathrm{d} & \leftarrow Q_{1} \cap \operatorname{pre}\left(Q_{2}\right) \\
V_{2-1}: / \mathrm{a} / \mathrm{b} / \mathrm{d} / \mathrm{e} & \leftarrow\left(\operatorname{pre}\left(Q_{2}\right)-Q_{1}\right) \cdot \operatorname{suf}\left(Q_{2}\right)
\end{array}
$$

and produce the final answers:

$$
\begin{aligned}
& Q_{1} \leftarrow\left(V_{1-2}, / \mathrm{Ans} / *\right) \\
& Q_{1} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / *\right) \\
& Q_{2} \leftarrow\left(V_{1 \cap 2}, / \mathrm{Ans} / * / \mathrm{e}\right) \quad \leftarrow \operatorname{suffix}\left(Q_{2}\right) \\
& Q_{2} \leftarrow\left(V_{2-1}, / \mathrm{Ans} / *\right)
\end{aligned}
$$

Example 3: A Single Recursive Query

Given:

$$
\{Q: / / \mathbf{a} / \mathbf{b} / * / \mathbf{b}
$$

then, we submit:

$$
\begin{cases}V_{1}: / / a / b / a / b & -/ / a / b / * / b / / * \\ V_{2}: / / a / b / \overline{\{a\}} / \mathrm{b} & -/ / \mathrm{a} / \mathrm{b} / * / \mathrm{b} / / *\end{cases}
$$

and produce the final answers:

$$
\begin{aligned}
& Q \leftarrow\left(V_{1}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{2}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{2}, / \mathrm{Ans} / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / * / * / \mathrm{b}\right)
\end{aligned}
$$

Example 3: A Single Recursive Query

Given:

$$
\{Q: / / \mathbf{a} / \mathbf{b} / * / \mathbf{b}
$$

then, we submit:

$$
\left\{\begin{array}{ll}
V_{1}: / / a / b / a / b & -/ / a / b / * / b / / * \\
V_{2}: / / a / b /\{a\} / b & -/ / a / b / * / b / / *
\end{array} \leftarrow \begin{array}{l}
\text { to retrieve only } \\
\text { top-most answers }
\end{array}\right.
$$

and produce the final answers:

$$
\begin{aligned}
& Q \leftarrow\left(V_{1}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{2}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{2}, / \text { Ans } / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / * / * / \mathrm{b}\right)
\end{aligned}
$$

Example 3: A Single Recursive Query

Given:

$$
\{Q: / / \mathbf{a} / \mathbf{b} / * / \mathbf{b} \quad(\operatorname{pre}(Q)=/ / \mathbf{a} / \mathbf{b}, \quad \operatorname{suf}(Q)=/ * / \mathbf{b})
$$

then, we submit:

$$
\begin{cases}V_{1}: / / \mathrm{a} / \mathrm{b} / \mathbf{a} / \mathrm{b} & -/ / \mathrm{a} / \mathrm{b} / * / \mathrm{b} / / * \\ V_{2}: / / \mathrm{a} / \mathrm{b} /\{\mathbf{a \}} / \mathrm{b}-/ / \mathrm{a} / \mathrm{b} / * / \mathrm{b} / / * & \leftarrow \boldsymbol{Q} \cap \operatorname{pre}(\boldsymbol{Q}) \\ \hline \boldsymbol{Q}-\operatorname{pre}(\boldsymbol{Q})\end{cases}
$$

and produce the final answers:

$$
\begin{aligned}
& Q \leftarrow\left(V_{1}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{2}, / \text { Ans } / *\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{2}, / \text { Ans } / / \mathrm{a} / \mathrm{b} / * / \mathrm{b}\right) \\
& Q \leftarrow\left(V_{1}, / \text { Ans } / * / * / \mathrm{b}\right) \quad \leftarrow \operatorname{suf}(Q)
\end{aligned}
$$

Algorithm

Input:

$$
\left\{\begin{array}{l}
Q_{1}: /{ }_{1}^{1}
\end{array} p_{1}^{1} / /_{1}^{2} p_{1}^{2} \ldots \ldots /_{1}^{l_{1}} p_{1}^{l_{1}}\right.
$$

(each $/{ }_{i}^{j}$ is either / or //)

Output:

- a set of view queries $\left\{V_{1}, \ldots, V_{m}\right\}$, and
- a set of triplets of the form $Q_{i} \leftarrow\left(V_{j}, q_{i}^{j}\right)$

Algorithm

Auxiliary Function $p p_{i}^{j}$

$$
\begin{array}{ll}
p p_{i}^{j} \equiv \emptyset \text { (empty pattern) } & \text { if } j=0, / /{ }_{i}^{1}=/ \\
/ / * & \text { if } j=0, / /{ }_{i}^{1}=/ / \\
/{ }_{i}^{1} p_{i}^{1} \ldots /{ }_{i}^{j} p_{i}^{j} & \text { if } j>0, / /{ }_{i}^{j+1}=/ \\
/{ }_{i}^{1} p_{i}^{1} \ldots /{ }_{i}^{j} p_{i}^{j} \cup /{ }_{i}^{1} p_{i}^{1} \ldots /{ }_{i}^{j} p_{i}^{j} / / * & \text { if } j>0, /{ }_{i}^{j+1}=/ /
\end{array}
$$

Egg.:

$$
\left\{\begin{array}{l}
Q_{1}: / / \mathbf{a} \\
Q_{2}: / \mathbf{b} / /\{\mathbf{c}\}
\end{array} \longrightarrow \quad \begin{array}{l}
p p_{1}^{0}=/ / * \\
p p_{2}^{0}=\emptyset \\
p p_{2}^{1}=/ \mathbf{b} \cup / \mathbf{b} / / *
\end{array}\right.
$$

Algorithm

Main Routine

1. For every S, T, s.t.:

- $S \subseteq\{1, \ldots, n\}, \quad S \neq \emptyset$
- $T \subseteq\left\{(i, j) \mid 1 \leq i \leq n, 0 \leq j \leq l_{i}-1\right\}$
create a view query $V(S, T)$:
$\left(\cap_{i \in S}^{\cap} Q_{i}-\underset{i \notin S}{\cup} Q_{i}\right) \cap\left(\underset{(i, j) \in T}{\cap} p p_{i}^{j}-\underset{(i, j) \notin T}{\cup} p p_{i}^{j}\right)-\underset{1 \leq i \leq n}{\cup} Q_{i} / / *$

2. For each $V(S, T)$, create triplets:
$Q_{i} \leftarrow(V(S, T), /$ Ans $/ *) \quad$ for $i \in S$
$Q_{i} \leftarrow\left(V(S, T), / A n s / * /{ }_{i}^{j+1} p_{i}^{j+1} \ldots /{ }_{i}^{l_{i}} p_{i}^{l_{i}}\right)$ for $(i, j) \in T$

Algorithm

Main Routine

1. For every S, T, s.t.:

- $S \subseteq\{1, \ldots, n\}, \quad S \neq \emptyset$
- $T \subseteq\left\{(i, j) \mid 1 \leq i \leq n, 0 \leq j \leq l_{i}-1\right\}$
create a view query $V(S, T)$:
$\left(\cap_{i \in S}^{\cap} Q_{i}-\underset{i \notin S}{\cup} Q_{i}\right) \cap\left(\underset{(i, j) \in T}{\cap} p p_{i}^{j}-\underset{(i, j) \notin T}{\cup} p p_{i}^{j}\right)-\underset{1 \leq i \leq n}{\cup} Q_{i} / / *$ \Downarrow
classifying elements based on which Q_{i} it matches

Algorithm

Main Routine

1. For every S, T, s.t.:

- $S \subseteq\{1, \ldots, n\}, \quad S \neq \emptyset$
- $T \subseteq\left\{(i, j) \mid 1 \leq i \leq n, 0 \leq j \leq l_{i}-1\right\}$
create a view query $V(S, T)$:
$\left(\cap_{i \in S}^{\cap} Q_{i}-\underset{i \notin S}{\cup} Q_{i}\right) \cap\left(\underset{(i, j) \in T}{\cap} p p_{i}^{j}-\underset{(i, j) \notin T}{\cup} p p_{i}^{j}\right)-\underset{1 \leq i \leq n}{\cup} Q_{i} / / *$
\Downarrow
classifying elements based on which prefixes it matches

Algorithm

Main Routine

1. For every S, T, s.t.:

- $S \subseteq\{1, \ldots, n\}, \quad S \neq \emptyset$
- $T \subseteq\left\{(i, j) \mid 1 \leq i \leq n, 0 \leq j \leq l_{i}-1\right\}$
create a view query $V(S, T)$:
$\left(\cap_{i \in S}^{\cap} Q_{i}-\underset{i \notin S}{\cup} Q_{i}\right) \cap\left(\underset{(i, j) \in T}{\cap} p p_{i}^{j}-\underset{(i, j) \notin T}{\cup} p p_{i}^{j}\right)-\underset{1 \leq i \leq n}{\cup} Q_{i} / / *$
to only retrieve the top-most answers

Algorithm

Main Routine

1. For every S, T, s.t.:

- $S \subseteq\{1, \ldots, n\}, \quad S \neq \emptyset$
- $T \subseteq\left\{(i, j) \mid 1 \leq i \leq n, 0 \leq j \leq l_{i}-1\right\}$
create a view query $V(S, T)$:
$\left(\cap_{i \in S}^{\cap} Q_{i}-\underset{i \notin S}{\cup} Q_{i}\right) \cap\left(\underset{(i, j) \in T}{\cap} p p_{i}^{j}-\underset{(i, j) \notin T}{\cup} p p_{i}^{j}\right)-\underset{1 \leq i \leq n}{\cup} Q_{i} / / *$

2. For each $V(S, T)$, create triplets:
$Q_{i} \leftarrow(V(S, T), /$ Ans $/ *) \quad$ for $i \in S$
$Q_{i} \leftarrow\left(V(S, T), / A n s / * /{ }_{i}^{j+1} p_{i}^{j+1} \ldots /{ }_{i}^{l_{i}} p_{i}^{l_{i}}\right)$ for $(i, j) \in T$

Algorithm

An Example

For example, given:

$$
\left\{\begin{array}{l}
Q_{1}: / / \mathrm{a} \\
Q_{2}: / \mathrm{b} / / \overline{\{c\}}
\end{array}\right.
$$

Then,

$$
\left\{\begin{array}{l}
\boldsymbol{p} \boldsymbol{p}_{1}^{0}=/ / * \\
\boldsymbol{p} \boldsymbol{p}_{2}^{0}=\emptyset \\
\boldsymbol{p} \boldsymbol{p}_{2}^{1}=/ \mathbf{b} \cup / \mathbf{b} / / *
\end{array}\right.
$$

- Views for T including $p p_{2}^{0}$ or not including $p p_{1}^{0}$ are empty.
- $\cap p p_{1}^{0}$ and $-p p_{2}^{0}$ can be omitted.

Algorithm

An Example

Views:

$$
\begin{aligned}
& V_{1}:\left(Q_{1} \cap Q_{2}\right) \cap p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right) \\
& V_{2}:\left(Q_{1} \cap Q_{2}\right)-p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right) \\
& V_{3}:\left(Q_{1}-Q_{2}\right) \cap p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right) \\
& V_{4}:\left(Q_{1}-Q_{2}\right)-p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right) \\
& V_{5}:\left(Q_{2}-Q_{1}\right) \cap p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right) \\
& V_{6}:\left(Q_{2}-Q_{1}\right)-p p_{2}^{1}-\left(Q_{1} / / * \cup Q_{2} / / *\right)
\end{aligned}
$$

Triplets:

$$
\begin{array}{ll}
Q_{1} \leftarrow\left(V_{i}, / / \mathrm{Ans} / *\right) & \text { where } i \in\{1,2,3,4\} \\
Q_{2} \leftarrow\left(V_{i}, / / \mathrm{Ans} / *\right) & \text { where } i \in\{1,2,5,6\} \\
Q_{1} \leftarrow\left(V_{i}, / / \mathrm{Ans} / * / / \mathrm{a}\right) & \text { where } i \in\{1,2,3,4,5,6\} \\
Q_{2} \leftarrow\left(V_{i}, / / \mathrm{Ans} / * / / \overline{\text { c }\}}\right) & \text { where } i \in\{1,3,5\}
\end{array}
$$

Algorithm

The view set computed by our algorithm is minimal

because what it does is:
to retrieve only top-most answers and classify them and therefore,

- it retrieves only necessary elements, and
- no element appears more than once.

Discussion

Efficiency of the Algorithm

1. The number of view queries:

In our algorithm, it grows exponential with:

- the number of given queries (even for non-recursive queries), and
- the total length of given queries (for recursive queries) but it is inevitable to minimize the view size.

2. Evaluation cost on the server: In our experiments,

- we could even reduce the server cost in many cases.

It is because the view queries are more complicated, but have smaller answers than the original queries.

Related Work

- Minimal views for relational queries [Chirkova, Li 03] redundancy caused by join operations I
our work: redundancy caused by nested structure of XML
- Reminder query [Dar et al 96]

1. submit Q_{1}, and cache the result
2. given Q_{2}, retrieve only $Q_{2}-Q_{1}$

Not always possible to extract $Q_{1} \cap Q_{2}$ from the cached Q_{1}
our work: given Q_{1} and Q_{2},
retrieve $Q_{1}-Q_{2}, Q_{1} \cap Q_{2}, Q_{2}-Q_{1}$

Conclusion

We showed an algorithm to compute a minimal view for a given set of XPath queries.

Our algorithm works as long as:

1. the fragment is closed under \cup and -,

- we use those operations to compute view queries

2. it only supports child and descendant axis.

- some axes (e.g. following) make it harder to extract nesting answers from top-most answers.

Future Work

- Efficient evaluation of view queries on the server.

Queries produced by our algorithm have some pattern.
$-Q_{1}-Q_{2}, Q_{1} \cap Q_{2}, Q_{2}-Q_{1}$
$--Q_{i} / / *$

- Interaction with the compression approach.

1. compress answers on the server before sending
2. send the compressed answers
3. decompress on the client

Compression removes redundancy and may offset the benefit of our approach.

