Subtopic Ranking Based on Hierarchical Headings

Tomohiro Manabe and Keishi Tajima Graduate School of Informatics, Kyoto Univ. <u>{manabe@dl.kuis, tajima@i}.kyoto-u.ac.jp</u>

What are subtopics?

- We focus on a topic given as a keyword query
- A *subtopic* of a given keyword query is: Another keyword query that specializes and/or disambiguates the search intent of the given query

harry potter Search

harry potter movieharry potter hp

✓ office workplaceX office office

Sakai, T., Dou, Z., Yamamoto, T., Liu, Y., Zhang, M., and Song, R. (2013). Overview of the NTCIR-10 INTENT-2 task. In NTCIR.

Why are subtopics important?

Subtopics are useful for

- Query suggestion/completion
- Search result diversification
 - By including a few pages for each subtopic in the search result

Our Problem: Subtopic Ranking

- Query suggestion/completion
 - Which subtopic should be suggested?
- Search result diversification
 - Which subtopic should be included in the search results?

Sorting subtopics by their *intent probabilities*

(the probability that the user intends that subtopic)

Our Idea: Hierarchical Headings are useful

We use *hierarchical heading structure* in documents It consists of:

- Nested logical *blocks*
- Each block has its own *heading*
 - A heading describes its own and descendant blocks

Assumption 1:

<u>Hierarchical headings represent hierarchical topics</u>

Programming

All about computer programming skills.

Schools

Top schools for computer ...

Courses

Specifically, the most famous ...

Degrees

Some schools award degrees ...

Jobs

Programming skills are required ...

Example Document

Programming

- Programming schools
 - Programming school courses
 - Programming school degrees
- Programming jobs

Programming

All about computer programming skills.

Schools

Top schools for computer ...

Courses Specifically, the most famous ...

Degrees

Some schools award degrees ...

Jobs

Programming skills are required ...

E.g. Schools block contains more letters and descendant blocks than Jobs block

- Authors must have assumed the readers need more information on "Schools"
- It suggests that "Schools" have higher intent probability

Assumption 2: <u>Subtopics with more contents</u> <u>are more important</u>

Overview of our Assumptions and Methods

Our assumptions are:

- Hierarchical headings represent hierarchical topics
- Topics with more contents is more important

Our subtopic ranking method:

- 1. Score blocks based on their content quantity
- 2. Score subtopics by integrating the scores of blocks *matching* the subtopics
- 3. Rank the subtopics based on their scores

Matching between Subtopics and Blocks

A subtopic *matches* a block iff:

All words in the subtopic appear either in the headings of the block or of its ancestor blocks

Before comparing, we perform basic preprocessing

- Tokenization
- Stop word filtering
- Stemming

Programming

All about computer programming skills.

Schools

Top schools for computer ...

Courses

Specifically, the most famous ...

Degrees

Some schools award degrees ...

Jobs

Programming skills are required ...

Example of Matching

Subtopic "programming schools" matches block "schools" in this document.

NOTE: if a topic matches a block, its descendant blocks also match it, but we only consider top-most matching blocks

Overview of our Methods

- 1. Score blocks based on their content quantity We compare 4 block-scoring methods
- Score subtopics by integrating scores of blocks matching the subtopics
 We compare 4 integration methods
- 3. Rank the subtopics based on their scores We compare 2 ranking methods

Overview of our Methods

Our subtopic ranking methods:

- 1. Score blocks based on their content quantity We compare 4 block-scoring methods
- Score subtopics by integrating scores of blocks matching the subtopics
 We compare 4 integration methods
- 3. Rank the subtopics based on their scores We compare 2 ranking methods

1. Scoring Blocks Based on Content Quantity

We compare four block-scoring methods:

- 1-A. Length scoring
- 1-B. Log-scale scoring
- 1-C. Bottom-up scoring
- 1-D. Top-down scoring

1-A. Length Scoring

Idea: Block with more text is more important

<u>Score a block by</u> the number of letters in it

 Including those in descendant blocks

Programming 3,000 letters

All about computer programming skills.

Schools 2,500 letters

Top schools for computer ...

Courses **1,600 letters** Specifically, the most famous ...

Degrees 400 letters

Some schools award degrees ...

Jobs 440 letters

1-B. Log-Scale Scoring

Idea: Importance of block is not linearly proportional to its content quantity

<u>Score a block by logarithm</u> of the numbers of letters in it Programming $\log(3k) \approx 3.5$

All about computer programming skills.

Schools log(2,500) ≈ 3.4 Top schools for computer ...

Courses log(1,600) ≈ 3.2 Specifically, the most famous ...

Degrees log(400) ≈ 2.6 Some schools award degrees ...

Jobs log(440) ≈ 2.6

1-C. Bottom-up Scoring

Idea: Importance of some topics are independent from text length • e.g. telephone number

Score a block by the

<u>number of blocks in it</u>

(including itself)

Programming 1+3+1=5

All about computer programming skills.

Schools 1+1+1=3

Top schools for computer ...

Courses 1

Specifically, the most famous ...

Degrees 1

Some schools award degrees ...

Jobs 1

1-D. Top-down Scoring Idea: Authors often divide a block into child blocks that have the equal importance

Programming 1

All about computer programming skills.

Schools 1 / (2 + 1) = 1/3

Top schools for computer ...

Courses (1/3) / (2 + 1) = 1/9Specifically, the most famous ...

Degrees (1/3) / (2 + 1) = 1/9Some schools award degrees ...

Jobs 1 / (2 + 1) = 1/3

Overview of our Methods

Our subtopic ranking methods:

- 1. Score blocks based on their content quantity We compare 4 block-scoring methods
- Score subtopics by integrating scores of blocks matching the subtopics
 We compare 4 integration methods
- 3. Rank the subtopics based on their scores We compare 2 ranking methods

2. Score Subtopics by Integrating Scores of Matching Blocks

2-1. Integrate the block scores into document scores

2-2. Integrate the document scores into the final score

2-1. Integrate Block Scores into Document Score

 Simply sum up the scores of all matching blocks in each document

2-2. Integrate Document Scores into the Final Score

We compare four integration methods:

- 2-2-a. Simple Summation
- 2-2-b. Per-Document Normalization
- 2-2-c. Per-Domain Normalization
- 2-2-d. Hybrid Normalization

2-2-a. Simple Summation

Simply sum up scores of multiple documents

• The score of a subtopic is content quantity in whole corpus

2-2-b. Per-Document Normalization

- In summation method, documents with more contents have bigger influence on scores
- However, each document may be equally important
- Divide scores by the scores of the root block of document

2-2-c. Per-Domain Normalization

• We can also consider per-domain normalization Divide total score of matching blocks in a domain by the total score of root blocks in the domain

2-2-d. Hybrid Normalization

Apply both page-based and domain-based normalization

Overview of our Methods

Our subtopic ranking methods:

- 1. Score blocks based on their content quantity We compare 4 block-scoring methods
- Score subtopics by integrating scores of blocks matching the subtopics
 We compare 4 integration methods
- 3. Rank the subtopics based on their scores We compare 2 ranking methods

3. Rank The Subtopics based on Their Scores

We compare 2 ranking methods:

- 3-A. Simple Ranking Method
- 3-B. Diversified Ranking Method

3-A. Simple Ranking Method

• Simply sort subtopics by their scores

Example Subtopics	Score
Programming Schools	2,500
Programming School	1,600
Courses	
Programming Jobs	440

Programming 3,000 letters

All about computer programming skills.

Schools 2,500 letters

Top schools for computer ...

Courses **1,600 letters** Specifically, the most famous ...

Degrees 400 letters

Some schools award degrees ...

Jobs 440 letters

3-B. Diversified Ranking Method

- As search result diversification is an important application, we also want <u>diversified ranking of</u> <u>subtopics</u>
- Basic idea is:
 - If a block matches an already-ranked subtopic, the topic of the block is already included in the ranking
 - So even if the block also matches some lower-ranked subtopics, the block should not contribute to their scores

3-B. Diversified Ranking Method

Each time a subtopic is ranked, all blocks matching the subtopic is removed

Example Subtopics Score

Programming Schools 2,500

Programming School 1,600

Courses

Programming Jobs

Programming 3,000 letters

All about computer programming skills.

Schools 2,500 letters

Top schools for computer ...

Courses **1,600 letters** Specifically, the most famous ...

Degrees 400 letters

Some schools award degrees ...

Jobs 440 letters

Ω

440

Evaluation

- We compared:
- Three baselines
- Our 4*4*2=32 proposed methods

Block Scoring

- Length
- Log-scale
- Bottom-up
- Top-down

Integration

- Summation
- Per-Page
- Per-Domain
- Hybrid

Ranking

Data Set

Data set used in NTCIR-10 INTENT-2

- Fifty keyword queries (i.e., topics)
- Baseline subtopic rankings for them
 - Snapshots of query completion results by Google, Yahoo!
 - Merged and dictionary-sorted query completion or suggestion results of three commercial search engines
- Known subtopics of each query and their intent probabilities (probability that the user intends that subtopic)

Evaluation Methodology

- We extract hierarchical headings (i.e., subtopics) from documents in baseline rankings for TREC 2012 Web (131-837 web pages for each query)
 - Hierarchical headings were extracted by our previously proposed method [Manabe, Tajima, VLDB2015]
- Calculate the scores of the extracted subtopics
- Re-rank baseline subtopic rankings
- Evaluate top-10 subtopics

Evaluation Measures

I-rec: Actual subtopics in the ranking | |All actual subtopics|

• Measures recall and diversity of subtopics in rankings

D-nDCG is like nDCG for document rankings

• The more actual subtopics at higher ranks, D-nDCG score of the ranking gets higher

<u>**D#-nDCG</u>**: Mean of I-rec and D-nDCG</u>

Comparison with Google (I-rec@10 = 0.3841)			Comparison with Yahoo! (I-rec@10 = 0.3815)				
Scoring	Integration	Ranking	D-nDCG@10	Scoring	Integration	Ranking	D-nDCG@10
Log-scale	Domain	Uniform	.4502	Log-scale	Page	Diversified	.4617
Log-scale	Combi.	Uniform	.4501	Bottom-up	Domain	Diversified	.4609
Log-scale	Domain	Diversified	.4487	Log-scale	Page	Uniform	.4608
Log-scale	Combi.	Diversified	.4485	Log-scale	Summation	Diversified	.4601
Bottom-up	Page	Diversified	.4479	Length	Domain	Diversified	.4587
Baseline (Google query completion) .3735		.3735	Baseline (Yahoo! query completion) .3829			.3829	

Scoring	Integration	Ranking	l-rec@10	D-nDCG@10	D#-nDCG@10
Log-scale	Summation	Uniform	.4009	.3997	.4003
Log-scale	Page	Uniform	.3986	.3981	.3984
Length	Summation	Uniform	.3974	.3945	.3959
Log-scale	Combi.	Uniform	.3956	.3921	.3939
Log-scale	Domain	Uniform	.3956	.3913	.3934
Baseline (N	Aerged, diction	nary-sort)	.3310	.3066	.3188

Comparison with Google (I-rec@10 = 0.3841)			Comparison with Yahoo! (I-rec@10 = 0.3815)				
Scoring	Integration	Ranking	D-nDCG@10	Scoring	Integration	Ranking	D-nDCG@10
Log-scale	Domain	Uniform	.4502	Log-scale	Page	Diversified	.4617
Log-scale	Combi.	Uniform	.4501	Bottom-up	Domain	Diversified	.4609
Log-scale	Domain	Diversified	.4487	Log-scale	Page	Uniform	.4608
Log-scale			1405	Log-scale	Summation	Diversified	.4601
Bottom-up	rage	Diversitied	Junea .4470	Length	Domain	Diversified	.4587
Baseline (Google query completion) .373			.3735	Baseline (Yahoo! query completion) .3829			.3829

Scoring	Integration	Ranking	l-rec@10	D-nDCG@10	D#-nDCG@10
Log-scale	Summation	Uniform	.4009	.3997	.4003
Log-scale	Page	Uniform	.3986	.3981	.3984
Length	Summation	Uniform	.3974	.3945	.3959
Log-scale	Cambi	Uniform	2056	2021	2020
Log-scale	Log-scale/Pag	e/Diversifi	ed .3840	.3695	.3768 .3254
Baseline (N	Aerged, diction	nary-sort)	.3310	.3066	.3188

Comparison with Google (I-rec@10 = 0.3841)			Comparison with Yahoo! (I-rec@10 = 0.3815)				
Scoring	Integration	Ranking	D-nDCG@10	Scoring	Integration	Ranking	D-nDCG@10
Log-scale	Domain	Uniform	.4502	Log-scale	Page	Diversified	.4617
Log-scale	Combi.	Uniform	.4501	Bottom-up	Domain	Diversified	.4609
Log-scale	Domain	Diversified	.4487	Log-scale	Page	Uniform	.4608
Log-scale	Combi.	Diversified	.4485	Log-scale	Summation	Diversified	.4601
Bottom-up	Page	Diversified	.4479	Length	Domain	Diversified	.4587
Baseline (Google query completion) .3735		Baseline (Yahoo! query completion) .3829			.3829		

Scoring	Integration	Ranking	l-rec@10	D-nDCG@10	D#-nDCG@10
Log-scale	Summation	Uniform	.4009	.3997	.4003
Log-scale	Page	Uniform	.3986	.3981	.3984
Length	Summation	Uniform	.3974	.3945	.3959
Log-scale	Combi.	Uniform	.3956	.3921	.3939
Log-scale	Domain	Uniform	.3956	.3913	.3934
Baseline (N	Aerged, dictior	nary-sort)	.3310	.3066	.3188

Comparison with Google (I-rec@10 = 0.3841)			Comparison with Yahoo! (I-rec@10 = 0.3815)				
Scoring	Integration	Ranking	D-nDCG@10	Scoring	Integration	Ranking	D-nDCG@10
Log-scale	Domain	Uniform	.4502	Log-scale	Page	Diversified	.4617
Log-scale	Combi.	Uniform	.4501	Bottom-up	Domain	Diversified	.4609
Log-scale	Domain	Diversified	.4487	Log-scale	Page	Uniform	.4608
Log-scale	Combi.	Diversified	.4485	Log-scale	Summation	Diversified	.4601
Bottom-up	Page	Diversified	.4479	Length	Domain	Diversified	.4587
Baseline (Google query completion) .3735		Baseline (Yahoo! query completion) .3829			.3829		

Scoring	Integration	Ranking	l-rec@10	D-nDCG@10	D#-nDCG@10
Log-scale	Summation	Uniform	.4009	.3997	.4003
Log-scale	Page	Uniform	.3986	.3981	.3984
Length	Summation	Uniform	.3974	.3945	.3959
Log-scale	Combi.	Uniform	.3956	.3921	.3939
Log-scale	Domain	Uniform	.3956	.3913	.3934
Baseline (N	/lerged, dictior	nary-sort)	.3310	.3066	.3188

Comparison with Google (I-rec@10 = 0.3841)			Comparison with Yahoo! (I-rec@10 = 0.3815)				
Scoring	Integration	Ranking	D-nDCG@10	Scoring	Integration	Ranking	D-nDCG@10
Log-scale	Domain	Uniform	.4502	Log-scale	Page	Diversified	.4617
Log-scale	Combi.	Uniform	.4501	Bottom-up	Domain	Diversified	.4609
Log-scale	Domain	Diversified	.4487	Log-scale	Page	Uniform	.4608
Log-scale	Combi.	Diversified	.4485	Log-scale	Summation	Diversified	.4601
Bottom-up	Page	Diversified	.4479	Length	Domain	Diversified	.4587
Baseline (Google query completion) .3735		Baseline (Yahoo! query completion) .3829			.3829		

Scoring	Integration	Ranking	l-rec@10	D-nDCG@10	D#-nDCG@10
Log-scale	Summation	Uniform	.4009	.3997	.4003
Log-scale	Page	Uniform	.3986	.3981	.3984
Length	Summation	Uniform	.3974	.3945	.3959
Log-scale	Combi.	Uniform	.3956	.3921	.3939
Log-scale	Domain	Uniform	.3956	.3913	.3934
Baseline (Merged, dictionary-sort)			.3310	.3066	.3188

Conclusion

Our ideas

- Hierarchical headings represent topic structure
- Length of contents for each topic ≈ importance of the topic
 Our methods
- Rank subtopics based on scores of blocks whose hierarchical headings match the subtopics

Our evaluation results indicated

- Our methods improved baseline rankings
- Log-scale scoring seems effective
- No difference among our score integration methods
- Our diversified ranking method was not effective