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Abstract—Some Twitter accounts provide information to the
followers not by publishing their own tweets but by forwarding
(i.e., retweeting) useful information from their friends. These
accounts need to select an appropriate number of tweets that
match the followers’ interests. If they retweet too many or too
few tweets, it annoys the followers or degrade the value of the
accounts. They also need to retweet them in a timely manner. If
they retweet a tweet long after they receive it, the informational
value of the tweet may diminish before the followers read it.
There is, however, a trade-off between these two requirements.
If they select tweets after seeing all the candidates, they can
select the best given number of tweets, but in order to provide
timely information, they have to decide to (or not to) retweet
each tweet before seeing all the following candidates. In order to
help the management of such Twitter accounts, we developed a
system that reads a sequence of tweets from the friends one
by one, and select a given number of (or less) tweets in an
online (or near-online) fashion. In this paper, we propose four
algorithms for it. Two of them give priority to the timeliness,
and make a decision immediately after reading a new tweet by
comparing its score with a threshold. The other two give priority
to the selection quality, and make a decision after seeing some
following tweets: after seeing the following tweets belonging to the
same time subinterval or after seeing a fixed number of following
tweets. The former two are truly online algorithms and the latter
two are near-online algorithms. Our experiment shows that the
near-online algorithms achieve high selection quality only with
acceptable time delays.

I. INTRODUCTION

Recently, microblogging services are rapidly growing. Twit-
ter, which is the most popular microblogging service, has over
115 million monthly active registered users, sending 58 million
messages (called tweets) per day [1]. In Twitter, a user follows
other users so that all the tweets by them are shown on the
user’s Twitter interface, called timeline. Those who follow a
user are called followers of the user, and those whom a user
follows are called friends of the user.

Twitter is not only playing a role of communication media,
but also used as a medium for collecting useful real-time
information. About 40% of active Twitter users do not submit
tweets but just watch other people’s tweets [2]. For those users,
Twitter is a tool for real-time journalism [3].

For those users, however, it is not easy to find useful
information buried in the huge number of tweets. To help
those users to collect useful information on Twitter, accounts

that play the role of “portal sites” on Twitter have appeared.
These accounts provide their followers with useful information
mainly by retweeting (i.e., forwarding) tweets from their
friends, rather than tweeting their own original tweets. In this
paper, we call those accounts portal accounts.

The daily task of the administrators of such portal accounts
is to read all tweets from the friends, and select tweets to
retweet that best match the followers’ interests. They need to
select an appropriate number of tweets in each time interval,
e.g., in every 24 hours. If they retweet too many tweets,
it annoys the followers and make them stop following the
accounts. If they retweet too few tweets, it also degrades the
value of the accounts as a portal, and they lose the followers.

In addition, they need to retweet tweets in a timely manner.
According to [4], the life cycle of a tweet is only 48 hours. If
they retweet a tweet long after receiving it, the informational
value of the tweet may diminish before the followers read it.
Even when the value of a tweet lasts longer, if the followers
receive the same tweet from other sources before receiving
from the portal account, it degrades the value of the portal.
Even when these are not the case, the followers want to receive
fresh information. Making the followers feel they are “first to
know” the information will add value to the portal account
[5]. For these reasons, it is important to reduce the time lag
between arrival and retweeting of tweets.

As explained above, portal accounts on Twitter need to
satisfy two requirements: selection of an appropriate number
of good tweets and prompt forwarding of them. There is,
however, a trade-off between these two requirements. If they
select tweets after seeing all the candidates in some time
interval, e.g. at the end of a day, they can select the best given
number of tweets. In order to provide timely information,
however, they have to make a decision for each tweet before
seeing all the following candidates. Once we retweet a tweet,
we cannot withdraw it later even if we find many following
tweets are much better than the previous one. We can delete
it from Twitter, but some followers may have already read it.
These mean that this is a typical environment where we need
some online algorithm.

In addition, manually selecting all retweets is a hard task for
the administrators of portal accounts. Portal accounts usually
have many friends and many followers. The administrators



have to monitor a huge number of tweets from the friends for
24 hours a day. They also have to analyze the interests of many
followers in order to select tweets best matching their interests.
It would be better for the administrators if these procedures
are automatated.

In this paper, we propose a system that automates these
tweet evaluation and selection processes. Our system reads a
sequence of tweets from the friends one by one, evaluate how
much each tweet match the followers’ interests, and select
a given number of tweets (or less if there are not enough
tweets). We evaluate a tweet by comparing its feature vector
with the feature vector produced from the profiles and tweets
of the followers. The selection is done in an online or near-
online fashion. When a new tweet arrives, the system decides
to retweet it or not immediately, or after seeing some (but not
all) following tweets. This system automatically retweets an
appropriate number of good tweets within short delays.

For the selection process, we propose and compare four
algorithms in this paper. The basic strategies of the four
algorithms are summarized as below:

• timeliness-oriented approaches (online)
1) history-based threshold estimation
2) stochastic threshold estimation

• selection-quality-oriented approaches (near-online)
3) selection at every time interval
4) selection at every n items

The former two algorithms give priority to the timeliness, and
make a decision immediately after reading a new tweet. These
two algorithms use threshold to make a decision. The first
algorithm computes the threshold by taking the average of
offline-computed best thresholds for the past time intervals.
The second algorithm computes the threshold based on the
estimated probability distribution of the values of tweets. The
other two give priority to the selection quality, and permits
some delay of retweeting. They make a decision after seeing
some (but not all) following tweets. In the third algorithm, the
system divides time into subintervals, and periodically select
tweets at the end of each subinterval from the tweets arrived
within that subinterval. In the fourth algorithm, the system
periodically selects tweets every time it receives n tweets,
where n is computed based on the number of recently received
tweets. The former two are truly online algorithms and the
latter two are near-online algorithms.

In order to create a dataset for the evaluation of these four
algorithms, we selected some real portal accounts on Twitter,
and collected the tweets by their friends. In order to infer the
interests of the followers of the portal accounts, we collected
the profiles of the followers, and also collected tweets by the
followers. Our experiments on this data set shows that the two
near-online algorithms achieve high selection quality with only
short acceptable time delays in retweeting.

The remainder of the paper is organized as follows. In
Section II, we review some related research. In Section III,
we formally define our problem. In Section IV, we explain
our method of evaluating how much a tweet match followers’

interests. In Section V, we describe our four algorithms for
tweet selection. In Section VI, we evaluate our four algorithms
by experiments. Finally, we conclude the paper and address
future research directions in Section VII.

II. RELATED WORK

In this section, we review related work on retweet recom-
mendation, and also some theoretical work on problems related
to our problem.

A. Retweet Recommendation

There have been much research on Twitter, such as research
on user classification, hot topic detection, recommendation of
tweets to read, and friend recommendation. On the other hand,
there have been only a little research on retweet recommenda-
tion, i.e., recommendation of tweets that the target user may
want to share with the followers. The survey paper by Kywe
et al. [6] explained that there was no paper about personalized
retweet recommendation when the paper was written. The
authors, however, also pointed out that the work by Uysal
et al. [7] and the work by Nasirifard et al. [8] can be applied
to retweet recommendation as explained below.

Uysal et al. [7] developed a classifier to predict the probabil-
ity that a given user retweets a given tweet. They model the
user’s past retweets by using four types of features: author-
based, tweet-based, content-based and user-based features.
This classifier can be used for retweet recommendation.

Nasirifard et al. [8] developed a system that helps various
activities on Twitter, and it can determine whether the hashtags
appearing in a tweet are relevant to the user’s followers. This
function can also be used for retweet recommendation.

To the best of our knowledge, the only existing study on
personalized retweet recommendation is the study by Wang et
al. [9]. Their method ranks tweets by using the information on
the past retweeting activities of the target user. The ranking
score of a tweet is computed from three kinds of information:
(1) how often the target user has retweeted tweets from the
sender of the tweet, (2) which tweets the user retweeted or
not retweeted in the past, and (3) which retweets by the user
in the past had a big impact on the followers.

There have been also studies on the analysis of users’
retweeting behavior and prediction of future retweets [10],
[11], [12], [13], [14], [15], [16]. Their primary purpose is not
recommendation of tweets to retweet, but these results can
also be used for retweet recommendation.

For example, Macskassy et al. [12] proposed four models
of users’ retweeting behavior. The first model simply assumes
that a user retweets recent tweets with higher probability than
older ones. The other models add some factor to this base
model. The second model adds a factor that gives higher
probability to tweets from users with whom the target user
recently interacted through retweeting or direct messaging.
The third model adds a factor that gives higher probability
to tweets whose topic is similar to the target user’s topic
of interest. The fourth model adds a factor that gives higher
probability to tweets from users whose interests are similar



to that of the target user. The result of their experiment with
real Twitter users shows that a combination of more than one
model can better explain the behavior of any user, but it also
shows that the third model based on the similarity between
tweets and user interests works best in average.

On the other hand, Peng et al. [13] used CRFs (Conditional
Random Fields) to model the behavior of retweeting users.
The model includes three types of features: features defined for
each tweet, features defined for each combination of a tweet
and a user, and also features defined for each combination of
a tweet and two users (e.g., the author of the tweet and a user
retweeting it). Some features are related to temporal factors.
Their experimental results show that the features defined for
a tweet and a user are the most predictive indicators.

Both [12] and [13] conclude that the topic similarity be-
tween tweets and user interests is the most important. Follow-
ing their results, we also use similarity between tweets and
user interests for tweet evaluation. [12] and [13], however,
construct a model based on users’ retweets in the past. It
means that their models mainly predict which tweets the users
want to retweet. On the other hand, our purpose is to help
management of portal accounts by recommending tweets that
the followers wants to read. Because of this, we use similarity
between tweets and the interests of the followers, instead of
similarity between tweets and the interests of the target users.

Vu et al. has proposed a system that aggregates information
produced by group members on various online services into
one social stream. The system filters out irrelevant or private
information from the stream, and provide only relevant infor-
mation to all the group members for information sharing [17].
This idea is similar to the idea of portal accounts on Twitter.

All the studies above are related to retweet recommendation,
but none of them discussed the problem of selecting appro-
priate number of tweets in an online or near-online fashion,
which is the main concern of this paper.

There have been also much research on recommendation of
tweets not for retweeting but for the target users’ own reading.
When we recommend tweets for the target user her/himself, we
do not need to care about the number of tweets we recommend.
We simply show the ranked list of recommended tweets to the
user. Then the user reads the list starting from the top-ranked
tweet, and stop when the user runs out of time. Therefore, there
have been no research on tweet recommendation discussing
the problem of the number of tweets to recommend.

B. Secretary Problems and Online Knapsack Problems

As we explained in I, the recommendation for a portal
account should satisfy the following requirements.

1) Maximize the match between selected tweets and users’
interests.

2) Recommend at most a given number of tweets in each
time period.

3) Decide to recommend a tweet or not as early as possible.
Such a problem is known as a multiple-choice secretary

problem [18]. In a multiple-choice secretary problem, you
want to hire a given number of secretaries, you interview

candidates one by one, and after each interview, you have
to decide to hire the candidate or not immediately. The goal
is to maximize the total score of the hired candidates.

Another related problem is an online knapsack problem
[19], [20]. In an online knapsack problem, items with a value
and a weight are shown to you one by one, and after seeing
each item, you have to decide whether you keep the item in
your knapsack or not immediately. You need to maximize
the total values of the selected items while keeping the
total weights within the given capacity. The multiple-choice
secretary problem is a special case of the online knapsack
problem where the weights of all items are equal.

There are variations of the online knapsack problem. For
example, the total number of items may or may not be given
in advance, and the distribution of item values may or may
not be given. In our case, both are not given. Therefore, in
order to apply some existing algorithm that requires either of
them, we first need to estimate it.

III. PROBLEM DEFINITION

In this section, we give the formal definition of our problem.
Let u be the current target portal account. V (u) =

{vu1 , . . . , vum} denotes the followers of u, and D(u, T ) =
⟨du1 , . . . , dun⟩ denotes the sequence of tweets posted by the
friends of u during a time interval T = [ts, te], where
du1 is the oldest tweet. t(dui ) denotes the posting time of
dui and s(dui , u) denotes the score of dui for u. Note that
t(du1 ) < t(du2 ) < · · · < t(dun). The details of how to compute
s(dui , u) is explained in the next section.

Our recommendation system chooses a sub-sequence of
D(u, T ) including at most c tweets. Let D′(u, T ) =
⟨duc1 , d

u
c2 , . . .⟩ denotes the selected sub-sequence. Our goal is to

maximize
∑

d∈D′(u,T ) s(d, u) while keeping |D′(u, T )| ≤ c.

IV. TWEET EVALUATION PROCESS

Our recommendation process consists of two sub-processes:
whenever a new tweet arrives, we first compute the score of
the tweet (evaluation process), and we decide to or not to
select it (selection process). In this paper, however, we focus
on the latter, i.e., the selection process, for the sake of space
limitation. In this section, we explain how we compute the
score of tweets only briefly. As explained in Section II, we
compute it based on the topic similarity between the tweet
and the followers’ interests.

A. Follower Filtering

Followers of a target user, however, may include many in-
active users. In retweet recommendation, we should eliminate
inactive users, and focus only on the interests of active fol-
lowers. Login timestamps are the best clue for distinguishing
active users from inactive users, but it is not publicly accessible
through Twitter API. In this paper, we regard an account is
inactive if it satisfies both of the following conditions:

• it posts less than one tweet per week, and
• the number of its friends has not changed for 60 days.



B. Estimation of Followers’ Interests

Next, we estimate the interests of the active followers.
Some social networks services, e.g., Facebook, have metadata
explicitly describing categories each user is interested in
(although some users may not provide information). Twitter,
however, only has a free-format profile data, and many users
do not provide detailed information in their profiles. In order
to obtain as much information on the followers’ interests as
possible, we use text in their profiles, and also use text in
tweets posted by them.

There are various ways to compute a vector representing the
topic of the tweets or the profiles. In this paper, however, our
main concern is not the evaluation process but the comparison
of four algorithms for the selection process. We, therefore, use
the most basic tf-idf method instead of other approaches, such
as LDA (Latent Dirichlet Allocation).

Before any processing, we preprocess all text contents in our
dataset by word stemming, stop word elimination, and unicode
normalization. We also eliminate all non-ascii characters, such
as Cyrill characters and Greek characters. After that, for each
follower v of u, we first produce a standard tf-idf vector from
the tweets by v in the following way.

For each combination of a word w and a follower v, we
calculate its tf value tf (w, v), and for each word w, we also
calculate idf (w), idf of the word w in the Twitter world, by
the formula below:

tf (w, v) =
occur(w, v)∑
w′ occur(w′, v)

idf (w, u) = log
|{vi|vi ∈ V (u), tf (w, vi) > 0}|/|V (u)|

|{vi|vi ∈ U, tf (w, vi) > 0}|/|U |

where occur(w, v) is the total number of occurrences of the
word w in all tweets by v, and U is a set of randomly sampled
Twitter users. By using tf (w, v)∗ idf (w, u), we create a tf-idf
vector for each follower v.

In our implementation, however, for efficiency, we do not
use all words appearing in tweets by the followers of u.
For each u, we select 5,000 words that have larger values
for (

∑
v∈V (u) tf (w, v)) ∗ idf(w, u), i.e., the sum of the tf-idf

values of w over all the followers of u.
Next, we augment the vector above by using the information

from the profile of the followers. We extract nouns from the
profiles of all the followers of u by using morphological
analyzer Mecab1. We add dimensions for these words to the
vector above (except when a word is already included in the
5,000 words above). For each of those nouns, if it appears in
the profile of a follower v, we set the coordinate for the noun
in the tf-idf vector for v to the average of tf-idf values within
that vector.

Finally, we compute a vector v⃗(u) representing the interests
of all the followers of u by taking the sum of the vectors of
all the followers of u, and normalizing it so that its norm is
1.

1Mecab, https://code.google.com/p/mecab/

C. Evaluation of Tweets

In the same way as we produced the vector v⃗(u) for the
followers, we produce a vector d⃗ui for each incoming tweet
dui in D(u, T ). We apply the same preprocessing to the text
contents of dui , extract words used in the vector v⃗(u) from dui ,
create a tf vector (not tf-idf vector), and normalize it so that
its norm is 1. More formally, d⃗ui is defined as follows:

d⃗ui =
(occur(w1, d

u
i ), occur(w2, d

u
i ), . . .)√

occur(w1, dui )
2 + occur(w2, dui )

2 + · · ·

where w1, w2, . . . are the words used when producing v⃗(u),
and occur(wj , d

u
i ) is the number of occurrences of the word

wj in dui .
We compute the score of dui for u, i.e., s(dui , u), by taking

cosine similarity between v⃗(u) and d⃗ui as defined below:

s(dui , u) = v⃗(u) · d⃗ui .

V. SELECTION PROCESS

In this section, we explain our four algorithms for selecting
tweets. As explained in Section I, two algorithms are online
algorithms that uses thresholds, and the other two algorithms
are near-online algorithms that make decisions periodically.

Our two online algorithms have the same basic structure.
We compute a threshold, and whenever a tweet arrives, if its
value exceeds the threshold, we retweet it. The two algorithms
differ only in the method of deciding the threshold.

The input of the algorithms is c, the upper limit of the
number of tweets, and ⟨du1 , . . . , dun⟩, the sequence of tweets
posted by the friends during some time interval. The output is
a sequence of selected tweets.

A. History-Based Threshold Algorithm

In the first method, we use the results of the past time inter-
vals to define the threshold. Let Tz be the current time interval.
We record the scores of tweets in the past k time intervals,
i.e., Tz−k, . . . , Tz−1, and for each Ti(z − k ≤ i ≤ z − 1), we
compute the c-th largest score among those of the tweets in
Ti. This value corresponds to the best threshold value for the
time interval Ti, computed offline after we obtain all tweets in
Ti. Let θ̂i denote such an “best offline threshold” for Ti. We
compute θ̂z−k, . . . , θ̂z−1, i.e., the best offline thresholds for
the past k intervals, and use their average as the threshold for
the next time interval Tz . Algorithm 1 shows this algorithm,
which we call history-based threshold algorithm.

This algorithm is based on the assumption that the optimal
thresholds for consecutive time intervals do not largely change.

B. Stochastic Threshold Algorithm

In our second algorithm, we estimate the threshold in a
probabilistic framework.

In our definition, s(dui , u) is the similarity between the
vector for a tweet and the vector for the followers. The latter,
i.e., the vector for the followers, is fixed throughout the time
interval. We also assume that the former, i.e., the vectors
for tweets, are independent from each other. Therefore, we



Algorithm 1 History-Based Threshold Algorithm
i := 1
O := ∅

θ :=

z−1∑
i=z−k

θ̂i/k

while i ≤ n and |O| < c do
if s(dui , u) ≥ θ then

retweet dui
O := O ∪ {dui }

end if
i := i+ 1

end while

assume s(dui , u) of tweets in D(u, T ) are i.i.d. (independent
and identically distributed).

To model s(dui , u), we use the beta distribution for the
following reasons.

1) The score s(dui , u) is in the range [0, 1). Although
s(dui , u) is defined as cosine similarity which is in the
range [0, 1], s(dui , u) can never be 1 because the number
of words included in a single tweet is less than 140,
while the dimension of our vectors is larger than 5,000.
Therefore, we should use some univariate probability
distribution whose domain is [0, 1).

2) According to our survey, scores of tweets from the
friends of a portal account u are not usually uniformly
distributed, so we should not use the uniform distribu-
tion.

The probability density function of the beta distribution is
defined as follows:

f(x;α, β) = B(α, β)−1xα−1(1− x)β−1

where B(α, β) is a Beta function, which is defined by using
Gamma function as follows:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

We estimate parameters α, β from the scores of the tweets
that has arrived so far by using maximum likelihood estima-
tion.

Here we make the following assumptions:
1) the beta distribution can fit the scores of the tweets in

the past,
2) scores of tweets in the current time interval are randomly

sampled from the estimated distribution,
3) the upper bound of the scores of the tweets in the current

interval T , denoted by smax (T ), is known, and
4) the number of incoming tweets in the current interval,

i.e., |D(u, T )| can be estimated.
Then we obtain:∫ smax (T )

θ
f(x;α, β)dx

µ
=

c

|D(u, T )|
(1)

where θ is the threshold we want to compute, and µ is the
mean value of f(x;α, β).

Let It(α, β) be the cumulative distribution function of the
beta distribution. Then (1) can be written as:

Ismax (T )(α, β)− Iθ(α, β)

µ
=

c

|D(u, T )|
and then we have

θ = I−1(Ismax (T )(α, β)−
µc

|D(u, T )|
). (2)

We can estimate the threshold θ by (2) only if we can
estimate smax (T ) and |D(u, T )|. We estimate them in the
following ways:

1) we estimate smax (T ) by the average of maximum scores
in the last k time intervals, and

2) we estimate |D(u, T )| by the average of the number of
incoming tweets in the last k time intervals.

However, the assumptions we explained before do not
necessarily hold, and the threshold computed by (2) includes
errors for the following reasons.

1) Scores during the time interval T are biased sampling
from the distribution f(x;α, β) which does not exactly
fit the score distribution.

2) smax (T ) varies from time to time.
3) |D(u, T )| also varies from time to time.
In order to reduce the error between θ computed by (2) for

the current interval Tz and the real best threshold for Tz , we
use the errors between them in the past intervals. We compute
θz−k, . . . , θz−1, i.e., thresholds estimated by (2) for the past
k intervals Tz−k, . . . , Tz−1, and also compute the best offline
thresholds θ̂z−k, . . . , θ̂z−1 defined in the subsection V-A. Then
we compute the average error in the past k time intervals by
the formula below:

ϵ =
z−1∑

i=z−k

(θi − θ̂i)/k.

By using this ϵ, we define a revised threshold θ′ as below:

θ′ = θ − ϵ.

Our second algorithm use this θ′ as the threshold. We omit
the formal definition of the algorithm because it is the same
as the first algorithm except that we use θ′ as the threshold.

C. Time-Interval Algorithm

The remaining two algorithms select tweets periodically.
The third algorithm does it in a fixed time interval.

We divide the current time interval T into c sub-intervals.
Notice that c is the number of tweets we select. In each sub-
interval, we select one tweet, and thus we select c tweets in
total.

At the beginning of each sub-interval, we create an empty
buffer for storing tweets. During a sub-interval, we store all
incoming tweets in that buffer, and at the end of the sub-
interval, we select a tweet that has the highest score among
the tweets in the buffer.

When c is large compared with the number of incoming
tweets, or when the arrival of tweets are not uniformly



Algorithm 2 Time-Interval Algorithm
i := 1
O := ∅
B := ∅
subinterval := 1
while i ≤ n and |O| < c do

if just passed the end of a sub-interval then
k := subinterval − |O|
retweet top-k tweets in B
O := O ∪ {top k tweets in B}
B := ∅
subinterval := subinterval + 1

end if
B := B ∪ {dui }
i := i+ 1

end while

distributed but are skewed to specific time period, we may
have sub-intervals during which we have no incoming tweet.
In such a case, we “carry over” the slot to the next sub-interval,
and we select two tweets in the next sub-interval. If we have
less than two tweets in the next sub-interval, we “carry over”
the unused slots to the following sub-interval again.

In the implementation, we do not need to store all incoming
tweets, but need to store only n tweets that have the highest
scores among the tweets that have arrived so far in the current
sub-interval, where n is the number of “carry-over” plus 1. In
the definition below, however, we simply store all the incoming
tweets for simplicity of the definition.

Formal definition of the third algorithm, which we call time-
interval algorithm, is shown in Algorithm 2.

D. Every n-Tweets Algorithm

The last algorithm also periodically makes a decision, but
not at every fixed time interval. Instead, the fourth algorithm
makes a decision at every fixed number of tweet arrivals. First,
we estimate the number of incoming tweets in the current time
interval |D(u, T )| by using the average number of tweets in the
last k time intervals. Then we calculate n = ⌊|D(u, T )|/c⌋,
and every time n tweets arrive, we select a tweet with the
highest score among them.

Similarly to the time-interval algorithm, we need a buffer
to store tweets. In the fourth algorithm, however, we do
not have “carry over”. Therefore, we only need to store at
most one tweet. However, in the definition of the algorithm
in Algorithm 3, we store all n tweets for simplicity of the
definition.

VI. EXPERIMENT

A. Dataset Creation

In this research, we focus on the recommendation of tweets
for a portal account to retweet. In order to evaluate our four
algorithms, we chose real portal accounts on Twitter, and
created a dataset for simulating each of them. We first selected
20 portal accounts satisfying the following conditions:

Algorithm 3 Every n-Tweets Algorithm
i := 1
O := ∅
B := ∅
while i ≤ n and |O| < c do
B := B ∪ {dui }
if |B| ≥ n then

retweet top tweet in B
O := O ∪ {top tweet in B}
B := ∅

end if
i := i+ 1

end while

1) It has more than 300 followers.
2) The account has been used for more than 2 years.
3) At least tweet and retweet 20 tweets a week.
4) More than 50% of its tweets are retweeted tweets.
Then we selected 7 accounts from them. In order to preserve

diversity, we classify these 20 portal accounts into 7 categories,
and selected the most typical portal accounts from each of the
7 categories. The names of the selected 7 accounts are shown
in Table I.

For each of these portal accounts, we collected the tweets
by their friends for more than two months (from Oct. 1,
2013 to Dec. 24, 2013) in order to simulate the activity of
the portal accounts. In order to estimate the interests of their
followers, we also collected the profiles of their followers, and
collected tweets by the followers for more than two months
(from Oct. 1, 2013 to Dec. 24, 2013). Because of the rate limit
of Twitter REST API2, we could not collect all the tweets by
the followers for portal sites with a large number of followers,
e.g., Microsoft Japan PR and Tokyo Government PR, which
have 19776 and 65768 followers, respectively. In such cases,
we randomly select at least 1,500 followers, and collect tweets
by them. On the other hand, we did not apply sampling for
the friends, even when a portal account has many friends.

The number of the followers and the friends of each portal
account are also summarized in Table I. Table I also shows the
number of followers for which we actually collected tweets.
Although we chose 1,500 users from the followers of each
portal account, there was a large number of followers that are
shared by more than one portal account, and as the result, the
number of monitored followers is far larger than 1,500 for
most accounts.

Our dataset include 5,649 users in total and more than
180 million tweets. 5,649 is far smaller than the sum of the
monitored followers of the seven portal accounts. It is because
there were large duplication among them as explained above.

B. Experimental Results

By using the dataset explained above, we compared the
performance of proposed four algorithms. A standard metric

2REST API Rate Limiting in v1.1 https://dev.twitter.com/docs/rate-limiting/
1.1



TABLE I
STATISTICS OF 7 PORTAL SITES USED IN OUR EXPERIMENTS

No. User Name (English Translation) Screen Name # of Followers # of Monitored Followers # of Friends
1 Microsoft Japan PR mskkpr 19776 3091 57
2 U. Tokyo Navi Todai Navi 4743 2415 29
3 Tokyo Government PR tocho koho 65768 2497 153
4 Nara-city Official Twitter naracity tweets 1718 1718 28
5 Kagawa Prefecture PR PrefKagawa 5854 1749 30
6 Kyoto U. COOP Travel Bureau travel id 330 330 145
7 Tokyo Parc Association PR TokyoParks 1667 1667 57

TABLE II
THE AVERAGE COMPETITIVE RATIO r(u, T ) OF FOUR ALGORITHMS WITH

c = 6, 12, 24

Average of r(u, T ) c = 6 c = 12 c = 24
History-Based Threshold 8.54% 19.35% 31.69%

Stochastic Threshold 4.75% 8.79% 13.34%
Time-Interval 68.47% 65.22% 63.00%

Every n-Tweets 70.56% 69.94% 71.76%

for the evaluation of online algorithms is competitive ratio,
which is the ratio between the performance of an online al-
gorithm and the performance of the optimal offline algorithm.
We compute competitive ratio for a portal u at a time interval
T by the formula below:

r(u, T ) =

∑
d∈D′(u,T ) s(d, u)∑
d∈D̂′(u,T ) s(d, u)

where D′(u, T ) is the the sub-sequence of tweets selected
by some online algorithm, while D̂′(u, T ) is the best answer
computed by an offline algorithm. In other words, D̂′(u, T ) is
the top-c tweets posted by the friends of u during T . r(u, T )
represents the ratio of total value of tweets selected by an
online algorithm and by the optimal offline algorithm.

We run our four algorithms for the 7 portal sites for 75
days with c = 6, 12, 24 and the length of the interval T is 24
hours. In other words, we need to recommend 6, 12, or 24
tweets every 24 hours.

The average values of r(u, T ) over 75 days for each
algorithm and for each of c = 6, 12, 24 are summarized
in Table II and Figure 1. As shown in the table and the
graph, the performance of two online algorithms are low while
the performance of two near-online algorithms are high. The
performance of Stochastic Threshold algorithm is always the
lowest, and the performance of Every n-Tweets algorithm is
always the highest. We omit the detailed results in each of
7 ∗ 3 = 21 cases for 7 sites and c = 6, 12, 24 for the
sake of space limitation, but n-Tweets algorithm shows the
highest performance for 15 cases among the 21 cases, and for
the other 6 cases, Time-Interval algorithm shows the highest
performance. Their differences are, however, not large in all
these 21 cases.

Time-Interval algorithm and Every n-Tweets algorithm,
however, have one serious disadvantage: time delay of retweet-
ing. We calculated the average delay of retweeting for each
algorithm with c = 6, 12, 24. The results are summarized in

av
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Time-Interval
Every n-Tweets
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Fig. 1. Average competitive ratio r(u, T ) of the algorithms with c = 6, 12, 24

TABLE III
AVERAGE DELAY OF FOUR ALGORITHMS WITH c = 6, 12, 24

Delay (sec) c = 6 c = 12 c = 24
History-Based Threshold 0 0 0
Stochastic Threshold 0 0 0
Time-Interval 7051 3609 1946
Every n-Tweets 6084 2716 1198

Table III and Figure 2.
The delay is almost 0 for two online algorithms. The delay

for Time-Interval algorithm for c = 6 is about two hours. This
is because we retweet one tweet for every 24/6 = 4 hours, and
the selected tweet is two hours old in average. When c = 12
and c = 24, the delay for Time-Interval algorithm is about one
hour and 30 minutes for the same reason.

On the other hand, Every n-Tweets algorithm has the
average delay longer than the Time-Interval algorithm for
c = 6, but slightly shorter for c = 12 and c = 24. Unlike the
Time-Interval algorithm, the Every n-Tweets algorithm does
not have the upper bound of the delay (except for the end of
the current interval T ). Suppose |D(u, T )| = 96 and c = 24.
Then we retweet every time we receive 4 tweets. In this case,
even if we have three tweets in the buffer, if the fourth tweet
do not arrive for long time, no tweet is retweeted for a long
time. This does not happen in Time-Interval algorithm as long
as we have at least one tweet in the buffer. However, these
experimental results show that the n-Tweets algorithm does
not cause long delays even when c is small, and produce even
shorter delay than Time-Interval algorithm when c is large.

In order to determine how long delays can be acceptable
for ordinary followers of the portals, we calculated time lags
between the arrival and retweeting for all tweets retweeted by
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Fig. 2. Average delay of the algorithms with c = 6, 12, 24

TABLE IV
DELAY IN 7 REAL PORTAL ACCOUNTS ON TWITTER

No. average (sec) max (sec) min (sec) median (sec)
1 8982 1121476 22 1560
2 39966 1491408 26 5950
3 13180 74051 258 4775
4 33069 611051 88 10747
5 10524 243247 33 2625
6 63665 578893 117 60075
7 16458 265742 98 3098

our 7 portal accounts. The result is summarized in Table IV.
Compared with the average delays in these manually managed
portal accounts, the delays in our automated system seems
acceptable even with near-online algorithms.

Based on our experimental results and the discussion above,
our conclusion is that Every n-Tweets algorithm is the best
choice for our purpose. Its advantages are as follows:

1) It shows the highest selection quality which is slightly
better than that of Time-Interval algorithm.

2) It causes only slightly longer delays than Time-Interval
algorithm even in the worst case, i.e., even when c is
small.

On the other hand, the two real-time algorithms did not
work well. The reason why Stochastic Threshold algorithm
did not work well could be the lack of enough information on
the distribution of tweet scores.

VII. CONCLUSION

In this paper, we proposed four tweet selection algorithms
for retweet recommendation systems. Our experimental results
with real Twitter data shows that Every n-Tweets algorithm is
the best because it achieves the highest selection quality only
with acceptable delays. Our algorithms are also applicable to
other stream media, such as RSS. There are several directions
for future research. Instead of specifying a rigid upper limit,
we can give some penalty to retweets exceeding the limit. In
such a setting, even when a portal has retweeted the given
number of tweets, it can retweet additional tweets if some of
the following tweets are really important. Another interesting
direction is dynamically changing the limit depending on the
time in a day. For example, we can set the limst to be a small
value during the daytime when the users are at work, while
we can set it to be a larger value durint the evening.
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