A Centrality for Social Media Users Focusing on Information-Gathering Ability

Mamoru Yamakawa, Keishi Tajima Kyoto University

Introduction

- Most existing SNS user scoring methods use the individual's social influence.
- However, users with a high ability to collect useful information quickly are also important in SNS.

 Can we devise a scoring method
 that uses information-gathering ability on Twitter?

Related work (1)

Katz Centrality [Katz 1953]

$$C_{\text{Katz}}(i) = \sum_{k=1}^{\infty} \sum_{j} \alpha^{k} (A^{k})_{ji}$$

- $0 < \alpha < 1/|\lambda_{\max}|$
- λ_{\max} is the eigenvalue of A with the largest absolute value

 $C_{\text{Katz}}(i)$ gives the sum of the information flowing into i

follow

Information flow

Related work (1)

Katz Centrality [Katz 1953]

$$C_{\text{Katz}}(i) = \sum_{k=1}^{\infty} \sum_{j} \alpha^{k} (A^{k})_{ji}$$

- $0 < \alpha < 1/|\lambda_{\max}|$
- λ_{\max} is the eigenvalue of A with the largest absolute value

Shortcomings:

- Weights of information transmitted by each node are equal.
- Parent node propagates information to all child nodes with probability 1.

Related work (2)

HITS algorithm [Kleinberg 1999]

$$\mathbf{a}^{(0)} = \mathbf{e}$$
$$\mathbf{h}^{(0)} = \mathbf{e}$$
$$\mathbf{a}^{(k)} = A^T \mathbf{h}^{(k-1)}$$
$$\mathbf{h}^{(k)} = A \mathbf{a}^{(k-1)}$$

Shortcomings:

Hub score is based only on the authority score of direct neighbors.
 → No consideration is given to information dissemination through retweets.

Proposed Method

- Node *i* has a weight w_i representing the quality of information
- Node *i* forwards Information from the parent node in $P_{RT}(i)$
- *α*: attenuation rate makes the quality of information smaller for those originating from more distant nodes.

Proposed Method

 $P_{\text{RT}}(i)$: information forwarding probability of *i* $P_{\text{RT}}(p)$: information propagating probability through path *p*

• we calculate the probability that information posted by u_1 reaches u_l through a (l-1)-hop path $p = u_1, u_2, \ldots, u_l$, denoted by $P_{\text{RT}}(p)$, by the formula below :

$$P_{\mathrm{RT}}(p) = P_{\mathrm{RT}}(u_2) \times P_{\mathrm{RT}}(u_3) \times \cdots \times P_{\mathrm{RT}}(u_{l-1})$$

Probability of Multi-hop Propagation

Adjacency matrix weighted by user retweet probability P_{RT} :

$$P = \begin{pmatrix} A_{11}P_{\mathrm{RT}}(1) & \cdots & A_{1n}P_{\mathrm{RT}}(1) \\ \vdots & \ddots & \vdots \\ A_{n1}P_{\mathrm{RT}}(n) & \cdots & A_{nn}P_{\mathrm{RT}}(n) \end{pmatrix}$$

- $P_{ij} = A_{ij} \cdot P_{RT}(i)$ • $\frac{(P^l)_{ij}}{P_{RT}(i)} = \sum_p P_{RT}(p)$
 - *p* is *l*-hop paths from *i* to *j*

Information-Gathering Ability Including Self-Originated Information

We first define the metric including self-originated information, denoted by $IGC_+(i)$ (Information-Gathering Centrality including self-originated information), as follows:

$$IGC_{+}(i) = \sum_{l=1}^{\infty} \sum_{j=1}^{n} \left(\alpha^{l-1} \frac{(P^{l})_{ji}}{P_{RT}(j)} w_{j} \right)$$

IGC₊ gives sum of the information flowing into *i* through retweets

Information-Gathering Ability Including Self-Originated Information

We first define the metric including self-originated information, denoted by $IGC_+(i)$ (Information-Gathering Centrality including self-originated information), as follows:

$$IGC_{+}(i) = \sum_{l=1}^{\infty} \sum_{j=1}^{n} \left(\alpha^{l-1} \frac{(P^{l})_{ji}}{P_{RT}(j)} w_{j} \right)$$

- There are many ways to define the value of w_i
 - PageRank
 - Topic-sensitive PageRank
 - etc.

Information-Gathering Ability Including Self-Originated Information

If α satisfies the condition, We can simplify the computation of $\overrightarrow{IGC_+} = (IGC_+(1), \dots, IGC_+(n))^T$ using the inverse matrix:

$$\overrightarrow{IGC_{+}} = (E - \alpha P^{T})^{-1} P^{T} \overrightarrow{w_{p}}$$

•
$$w_p(j) = w_j / P_{\text{RT}}(j)$$

• $\overrightarrow{w_p} = \left(w_p(1), \dots, w_p(n) \right)^T$

Elimination of Self-Originated Information

- $IGC_+(i)$ includes information originating *i* itself.
- IGC_{self}(i): the amount of information originating i and recieved by i.
- *IGC*(*i*) : our proposed metric

$$IGC(i) = IGC_{+}(i) - IGC_{self}(i)$$
$$IGC_{self}(i) = \sum_{t=1}^{\infty} \alpha^{t-1} \frac{(P^{t})_{ii}}{P_{RT}(i)} w_{i}$$

Elimination of Self-Originated Information

As in IGC_+ , We can efficiently the compute \overrightarrow{IGC} using inverse matrix and Hadamard product:

$$\overrightarrow{IGC} = \overrightarrow{IGC_{+}} - \frac{1}{\alpha} \left(E \otimes \left(\left(E - \alpha P^{T} \right)^{-1} - E \right) \right) \overrightarrow{w_{p}}$$

- \otimes is Hadamard product
 - $A \otimes B = (a_{ij}b_{ij}).$

Metric for Users Retweeting Useful Information

 IGC_{rt} : Another metric based on the amount information that

- *i* collects and
- Forward to its followerd

$$\overrightarrow{IGC}_{\mathrm{rt}} = \overrightarrow{IGC} \otimes \overrightarrow{P_{\mathrm{RT}}}$$

To compare the proposed metric with several existing metrics, we conducted experiments on two datasets collected from Twitter.

- The node dataset consist of seed user, and their followers and followees.
- The edge of dataset is the existing follow-relation between node pairs in dataset.

	Dataset 1	Dataset 2
seed user	@univkyoto	@A_I_News
number of nodes	40,691	32,739
number of edges	509,978	$456,\!483$
average $P_{\rm RT}$	2.58e-06	9.43e-07

To compare the proposed metric with several existing metrics, we conducted experiments on two datasets collected from Twitter.

- To estimate $P_{RT}(i)$, we collected the total number of tweets so far and the 100 most recent tweets for each account.
- In addition, collected the number of followers and following relationships for each account.

	Dataset 1	Dataset 2
seed user	@univkyoto	@A_I_News
number of nodes	$40,\!691$	32,739
number of edges	509,978	$456,\!483$
average $P_{\rm RT}$	2.58e-06	9.43e-07

We compared the node ranking by our *IGC* and *IGC*_{rt} with the ranking by the following existing metrics:

- $P_{\rm RT}$
- In-degree (d^{-})
- Out-degree (d^+)
- IGC $(w_i: PR)$
- IGC_{rt} (w_i : PR)
- Katz Centrality(Katz)
- Hub score(Hub)
- PageRank(PR)

IGC has strong positive correlation with Katz, but their correlation is smaller than the correlation between *IGC* and the hub score.

• Node weight w_j and retweet probability P_{RT} certainly makes *IGC* different from Katz.

	$P_{\rm RT}$	d^{-}	d^+	IGC	$IGC_{\rm rt}$	Katz	Hub	\mathbf{PR}
$P_{\rm RT}$	_	-0.11	-0.51	-0.48	0.16	-0.47	-0.48	-0.14
d^-	-0.11		0.34	0.18	-0.06	0.31	0.26	0.89
d^+	-0.51	0.34		0.76	0.33	0.88	0.85	0.34
IGC	-0.48	0.18	0.76	_	0.37	0.77	0.87	0.20
IGC_{rt}	0.16	-0.06	0.33	0.37		0.36	0.36	-0.04
Katz	-0.47	0.31	0.88	0.77	0.36		0.87	0.31
Hub	-0.48	0.26	0.85	0.87	0.36	0.87		0.27
PR	-0.14	0.89	0.34	0.20	-0.04	0.31	0.27	

To compare the ranking by the hub score and the ranking by *IGC* in more details, we show their top 10 users in Dataset 1.

In addition to the metrics from Experiment 1, we use the $\overline{f. PR}$

the average PageRank values of the followees of the user

The users with the highest hub scores have high out-degree values (d^+) , and high values in the column $\overline{\text{f.PR}}$.

Hub	P_{RT}	d^-	d^+	IGC	$IGC_{\rm rt}$	Katz	\mathbf{PR}	$\overline{\mathrm{f.PR}}$
1	39412	2	1	4	24532	1	4	0.385
2	30784	49	2	162	15993	3	224	0.139
3	28591	490	7	300	13731	2	1402	0.039
4	36761	58	11	5160	23869	8	438	0.017
5	27127	159	5	5225	14223	5	584	0.036
6	30478	96	4	5121	17271	12	193	0.049
7	32345	47	13	5172	19547	11	366	0.014
8	25973	91	10	688	11804	6	581	0.023
9	26821	683	9	2574	13114	16	1500	0.024
10	27008	748	12	303	12189	15	1318	0.022

By contrast, the users with the highest IGC scores do not necessarily have high values for d^+ and $\overline{f.PR}$.

IGC	P_{RT}	d^-	d^+	IGC_{rt}	Katz	Hub	\mathbf{PR}	$\overline{\mathbf{f}.\mathbf{PR}}$
1	35175	1200	354	19679	928	460	303	0.001
2	38853	3231	537	23637	647	337	1918	0.001
3	40444	307	289	26571	444	324	299	0.001
4	39412	2	1	24532	1	1	4	0.385
5	31209	112	31	14885	13	11	607	0.012
6	31028	1532	567	14718	1130	758	108	0.001
7	34157	9076	1255	18927	1439	795	3562	0.000
8	31389	691	244	15295	326	310	826	0.002
9	29945	323	59	13799	47	65	539	0.006
10	32659	7652	1014	17056	1799	742	3856	0.000

Conclusion

- We proposed a new centrality metric for social media users, focusing on information-gathering ability of users.
 - assigning different importance weight and different forwarding probability to each node.
- We show that we can compute our metrics efficiently.
- We compared the rankings generated by our metrics and the existing metrics on two social graphs obtained from Twitter.
- The result shows that the rankings by our metrics do not coincide with the rankings by existing metrics.

Future work

IGC in reversed edge graph

- *IGC* is expected to measure information distributing ability through multi-hop information propagation
- The comparison of *IGC* and PageRank would be an interesting