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Abstract. In this paper, we propose a method for quickly finding a
given number of instances of a target class from a fixed data set. We
assume that we have a noisy query consisting of both useful and useless
features (e.g., keywords). Our method finds target instances and trains a
classifier simultaneously in a greedy strategy: it selects an instance most
likely to be of the target class, manually label it, and add it to the training
set to retrain the classifier, which is used for selecting the next item. In
order to quickly inactivate useless query features, our method compares
discriminative power of features, and if a feature is inferior to any other
feature, the weight 0 is assigned to the inferior one. The weight is 1
otherwise. The greedy strategy explained above has a problem of bias: the
classifier is biased toward target instances found earlier, and deteriorate
after running out of similar target instances. To avoid it, when we run out
of items that have the superior features, we re-activate the inactivated
inferior features. By this mechanism, our method adaptively shifts to
new regions in the data space. Our experiment shows that our binary
and adaptive feature weighting method outperforms existing methods.

Keywords: data extraction, ranking method, relevance feedback

1 Introduction

Suppose we want to quickly find a given number of instances of some target
class from a fixed large data set. If we have enough sample data, we can train a
classifier for the class, but sometimes we have no such training data. For example,
when we want to find news articles related to some new topic from a large news
corpus, we usually have no labeled training data for such a new topic.

In such a case, a possible strategy is to find target instances and train a
classifier simultaneously. We select an item most likely to be of the target class

* This work was supported by JSPS KAKENHI Grant Number 22H00508, 23H03405,
and JST CREST Grant Number JPMJCR22M2, Japan.
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by using the current classifier (initially random), and manually label it. If it is of
the target class, we add it to the set of found target instances. No matter what
its label is, we also add it to the training data set, and re-train the classifier. We
repeat this process until we obtain a given number of target instances. Our goal
is to minimize the number of “misses”, i.e., the number of non-target instances
we manually label before obtaining a given number of target instances.

This problem is sometimes called the learning-to-enumerate problem [11], and
is related to relevance feedback. Note that it is different from the active learning
problem [23,30,13,6,1], where we want to obtain a good classifier with the
minimum number of items we label regardless of their classes. In active learning,
we choose an item to label that would best improve the classifier regardless of
its class, but in our problem, we prefer to label instances of the target class.

In the learning-to-enumerate problem, therefore, there exists a trade-off be-
tween exploitation and exploration. We need to choose either an item that is
more likely to be of the target class (exploitation), or an item that would better
improve the classifier (exploration). Jorger et al. [11] conducted an experiment
with 19 public data sets, and reported that an exploitation-only strategy with a
random forest classifier achieved the best performance in most cases without any
pattern regarding class bias, number of features, or total number of instances,
that influenced their results in any consistent way.

One problem in the exploitation-only strategy for data extraction from a fixed
data set is that the classifier is biased toward target instances found earlier. If
the target instances are distributed across several clusters, the classifier is biased
toward the clusters found earlier, and after we have extracted all the instances
in those clusters, the performance of the classifier suddenly degrades.

Another issue in our problem setting is formulation of useful queries. Because
we assume a new target class without existing training data, we do not know
what features (e.g., keywords) we should use in the query. Therefore, we assume
that we only have a noisy query including both useful and useless features.

We proposes AdaFeaSE (Adaptive Feature Selection for Enumeration), a
method for data extraction from a fixed data set. It consists of the following two
mechanisms for solving the two issues above. First, to quickly discard useless
features, we compare discriminative power of features in a pairwise manner, and
if a feature is inferior to any other with statistically significant difference, we
inactivate it by giving weight 0. Otherwise a feature is active and given weight
1. Second, when some active feature runs out of matching items, we remove the
feature from the set of the candidate features, re-activate inactive features, and
compare their discriminative power again to re-select the features to use. By this
mechanism, we can switch from an exhausted cluster to other clusters.

For example, suppose we want to find news articles on some topic from a news
corpus by using keywords. There is, however, no single keyword that can find all
the articles on the topic. Instead, the articles on the topic form several clusters,
each of which corresponds to some keywords. We do not know those keywords
in advance, and we can only come up with a set of keywords including both
useful and useless ones. We run AdaFeaSE with these keywords as the features,
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Fig. 1. State transition of features in our method. An active feature is inactivated if it
is inferior to some other active feature by statistical test. On the contrary, an inactive
feature is reactivated if no active feature is superior to it anymore. When an active or
inactive feature runs out of matching unlabeled data, it is moved to the finished state.

and after several rounds of selecting and labeling items, suppose AdaFeaSE has
found a useful keyword f that can find articles in one of the clusters with high
precision. AdaFeaSE then inactivates the other keywords by assigning weight 0,
and find target instances with relying on f. Because we extract articles from a
fixed data set, we run out of articles including the keyword f at some point.
AdaFeaSE then removes f, reactivate the other keywords that were given the
weight 0, and compare their discriminative power to re-select the keywords to
use. By this mechanism, AdaFeaSE focuses on each cluster in turn.

Fig. 1 summarizes the state transition of features among three states in
AdaFeaSE: Foctive, Finactive, Ffinished- F finished 15 the state representing that
the feature has run out of the matching items.

We conducted experiments where we find articles related to given new topics
from a fixed news corpus. To simulate a situation where we do not know what
words are useful to find relevant articles, and have to come up with candidate
words resulting in a set of words including both useful and useless ones, we
collected candidate words through crowdsourcing. The results of our experiments
show the superiority of our binary and adaptive feature selection method over
the standard learning techniques.

2 Related Work

Feature selection has been an important research topic in machine learning |3,
9,12,2,20, 15]. In particular, filter methods [21] use statistical tests such as Chi
square tests for choosing prospective features. The filter methods test the corre-
lation between features and the target class on the training data set, and either
choose some fixed number of features with high correlation, or choose those
with correlation higher than some threshold. On the other hand, AdaFeaSE
tests whether each feature is significantly inferior to some other feature in the
discriminative power, inactivate inferior ones temporarily, and reactivate them
when the superior ones have run out of matching data items. By this mecha-
nism, we adaptively change features to use. When the target class is distributed
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over multiple clusters, useful features tend to be disjunctive, that is, each feature
covers only one (or some) of the clusters. Our method chooses a small number
of features effective for one (or some) of the clusters, and dynamically changes
the features in order to focus on each cluster one by one.

Dimensionality reduction [26, 19, 27] is also a popular approach for reducing
the number of features for improving the learning speed when we have many fea-
tures. It is, however, effective when there are many redundant features that have
strong correlation with each other. The problem we focus on is not a redundant
feature set but a noisy feature set including many useless ones, e.g., a feature
set that non-expert users come up with. Useless features in such a feature set do
not necessarily have strong correlation with each other.

As explained before, we have a trade-off between exploitation and exploration
in our problem setting. It is similar to the multi-armed bandit problem [16].
There have been studies that model feature selections as a kind of multi-armed
bandit problem. Durand et al. [5] applied combinational bandits to online feature
selection problem. In their setting, items arrive sequentially and the learner
is allowed to access a small number of features for each item. Therefore, the
problem is how to choose a subset of features to observe in order to maximize
the classification rate. On the other hand, in our problem setting, we choose an
item to label, and if we pay a constant cost for labeling it, we can observe all
features of the item. In other words, in their setting, we can try one feature in
one attempt, and we cannot choose an item to try, while in our setting, we can
try all features in one attempt, and we need to choose one item to try.

As explained in the previous section, Jorger et al. [11] compared various
methods of balancing exploitation and exploration in the learning-to-enumerate
problem setting, and their conclusion is that a simple exploitation-only method
is the best. This means that the methods for active learning, e.g., uncertainly
sampling, which focus on exploration, do not perform well in our setting.

In our experiments, we collect candidate features (key phrases) through
crowdsourcing, which results in a noisy feature set including many useless ones.
There have been attempts to obtain features for classifications through crowd-
sourcing [4, 25, 32]. In those attempts, they show positive and negative samples
to help workers to find useful features. By contrast, we assume that we do not
have labeled sample data for training, thus cannot show such samples to workers.

A system proposed in [22] also uses human power to select useful features.
When their system asks a user to label a document, it also picks words by using
a standard feature selection method, and asks the user to determine if they are
relevant to specific classes. This method can be combined with ours.

Binary weighting is not necessarily good for classification tasks [10,17]. Our
experimental result also show that our binary weighting method is inferior to
some standard methods when they have been trained with enough data. However,
our result also show that binary weighting can be a good quick approximation
in the early stage of the training when we have a feature set including a few
useful ones and many useless ones. In addition, our experimental result shows
that feature sets human workers come up with really have such a characteristic.
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Algorithm 1 The basic procedure of the exploitation-only strategy
Input: items X, features F, target class C, workers W, number of needed instances n
Output: set of found target instances Xfound

1: Xuntavered < X, Xfound < 0, Xirain < 0, initialize the model M

2: while |Xfound| < n do

3: for all z; € Xyniabelea do compute target class score p; of x; by using M

4 x < x; with the highest p;

5 Query the workers W for the label y of z

6: if y = C then add z to Xjouna

7: Remove x from Xyniapelied
8.

9
10:

Add (ZL’,'y) to Xirain
: Re-train M on XNirain for Xuntabeled
end while

The exploitation-only strategy in the learning-to-enumerate problem is simi-
lar to relevance feedback. We query the labels of top-ranked items for improving
rankings. Our work is particularly related to query reduction problem [8,7,14]
where we remove words from verbose queries. Our method is different from theirs
in that our method does not aim to find a set of features that best describes
the whole target class. Instead, we find features with high precision even if they
work only for a small subset of the target class, and we dynamically change the
features to use in order to cover the whole target class.

3 Proposed Method

We first show the basic procedure of the exploitation-only strategy in the learning-
to-enumerate problem in Algorithm 1. Let W be a set of human workers that
always give the correct label to a queried item, X be the data set, and C' be the
target class. We repeatedly choose the most likely item = € X and query W for
its label y until we find n instances of C'. To minimize the number of misses,
i.e., labeling of non-target instances, we train a model M, and choose the next
item to label based on the target class score given by the current M (Lines 3-4).
Every time we label a new item, we re-train the model M (Lines 7-9).

This procedure always exploits the current knowledge, and never explore
new regions in the data space. It has been reported in [11] that the exploitation-
only strategy is the best for the learning-to-enumerate problem. Based on their
results, we adopt the exploitation-only strategy as the basis of our method.

In our framework, human workers play two roles. First, we ask workers W’
to propose prospective features F. We also ask workers W to label chosen items
at Line 5 in Algorithm 1. We assume that labels given by W (by using majority
voting) are always correct, while features proposed by W’ are noisy because
suggesting a candidate feature is a difficult open question, while determining
whether an item belong to a specific class is a closed question.

Next we explain our method AdaFeaSE. Let F = {fi,..., f;} be the set of
features proposed by the workers W'. Let f;(x;) denote the value of the feature
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f; of the item ;. In AdaFeaSE, M is represented by (Fyctive Finactives F finished)s
where the three components are the following subsets of F:

— Fuactive: currently active features,
— Finactive: currently inactive features,
— Ffinished: features that no remaining unlabeled item has.

They are disjoint decomposition of F, that is:
Factive N Finactive = Finactive N ]:ﬂnished = Factive N ]:ﬁnished = (Z)a and
]:active ) ]:'Lnactive U ‘Fﬁnished =F.

When we initialize M, all features in F are in F,cti0.. When updating M,
if no remaining unlabeled item has f; (when the feature is not binary, we use a
threshold), we move f; to Ffinishea. In addition, if we determine that f; € Factive
is inferior to some f; € Factive, Wwe move f; to Finactive- On the contrary, if no
fj € Factive 1s superior to f; € Fingctive anymore (because of the update of the
statistics or state transition of f; to Flnished), we move f; back to Fuctive-

By this initialize and update procedure, each feature moves among three
states in the following way. First, all features are in the active state. Each feature
then may go back and forth between the active and inactive state. However, once
it moves to the finished sate, it never moves back to the other states (Fig. 1).

In order to compare features f; and f; in terms of the discriminating power
to the target class, we maintain a table S where i-th (and j-th) row stores the
number of target and non-target instances in Xy.q;, that has the feature f; (and
fj)- To determine whether one is inferior to the other with statistically significant
difference, we use Fischer’s exact test when at least one of the four parameters in
the contingency table is smaller than 5, and we use Chi-squared test otherwise.

Algorithm 2 shows the sub-routines used by AdaFeaSE for initializing and
updating M, and for computing the target score p; for z; at the corresponding
parts in Algorithm 1. In the procedure for re-training M in Algorithm 2, we
first update S based on the current Xj.;,. After that we first revoke features in
Factive ad Finactive that no remaining data items in Xypigperea has (Line 7-8).
Next, we reactivate all f in Fipqective that have no active superior f’ anymore
(Line 9-11). We compare f and f’ based on the current S. Some f may be
reactivated because of the updated S, and some f may be reactivated because
some f’ that was superior to f has moved to Fjinisheq- Finally, we temporarily
inactivate all f that are inferior to any f’ that is currently active (Line 12-14).

M computes the target class score p; of x; by the formula p; = 3 feFume (x4).
In other words, we compute p; by a linear combination of the features with the
binary weight 1 for active features and 0 for other features. We use p; for ranking
the remaining data items based on their likeliness of being of the target class.

The theorem below shows the time complexity of AdaFeaSE.

Theorem 1. The worst case time complezity of AdaFeaSE is O(|F|?|X]). O

It is proportional to | F|? in the worst case because of the pairwise comparison
of the features. However, the worst case occurs only when O(|F|) rows of the
table S are updated (thus we need to re-evaluate all pairs of them), which rarely
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Algorithm 2 AdaFeaSE (sub-routines invoked from Algorithm 1)

1: procedure Initialize M
2: ]:active — -F7 ]:’mactive — @7 ]:ﬁnished — 0

3: end procedure

4:

5: procedure Re-train M on Xiqin for Xuniabeied

6: Update the statistics table S based on Xiin

7 for all f € ]:active U ]:inu,uti'ue do

8: if no € Xyniabeted has the feature f then move f to Fanished

9: for all f € Finactive do

10: if no f' € Fuctive is superior to f statistically significantly based on S then
11: move f to Factive

12: for all f € Fuctive do

13: if f is inferior to any f’ € Factive statistically significantly based on S then
14: move f to Finactive

15: end procedure

16:

17: procedure Compute target class score p; of x; by M
18: pi < Zfe]—‘ f(l’l)

active

19: end procedure

happens in practice. The results of our experiments with the data from a real
application show that only a few rows are updated in the most cases. Thus we
expect that AdaFeaSE scales well in practice with the number of features in F.

4 Experiments

We conducted experiments to evaluate our method. We used 6,684 news articles
published by Yahoo! Japan [29] in 2016. We set two target classes. Class Scandal
is the class of articles on scandals of celebrities. We define celebrities as people
who sometimes appear on TV as their jobs. Class Toyota is the class of articles
on Toyota’s business performance or on events that can affect it.

To create the ground truth, we crowdsourced the tasks of giving two binary
labels corresponding to the two classes to each article through Yahoo! Crowd-
sourcing [28]. We assigned three workers to each article, and adopted their results
if they all agree on the label. If they do not agree, we hired another three workers
to give labels, and adopted the results of majority voting. Table 1 summarizes
the results. Only a small portion of the 6,684 articles belong to the target classes.

We also submitted 200 microtasks to Yahoo! Crowdsourcing to collect phrases
that workers think are good clues for distinguishing articles of each target class.
We obtained 386 and 656 phrases for the Scandal and Toyota classes, respectively.
For example, the phrases for Toyota class include: automatic driving and crude
oil. We regard each obtained phrase as a binary feature of the articles; it has the
value 1 if the phrase appears in the article and 0 otherwise.

The phrases nominated by crowds include many phrases that appear in no
article in our data set. Out of 386 and 656 phrases nominated for Scandal and
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Table 1. Statistics of data sets

Articles Phrases
Target Class|Positive Negative Total|Nominated Used
Scandal 252 6,432 6,684 386 286
Toyota 79 6,605 6,684 656 272

200 250

200
5150
3

£100

Fig. 2. Histogram over the precision of features (left: Scandal, right: Toyota).

Toyota class, 286 and 272 phrases, respectively, appear in at least one article, as
summarized in Table 1. The other phrases were excluded from our experiment.

Fig. 2 shows the histograms of the number of phrases nominated for Scandal
(left) and Toyota (right) distributed over the precision, where the precision rep-
resents the ratio of the number of true positive articles to the number of articles
including the phrase. As shown in these histograms, most phrases have very low
precision while there are also some phrases with high precision.

Those high-precision phrases, however, include phrases that appear only in
a couple of articles. In our adaptive feature selection method, a high-precision
feature can be useful even if its recall is low, but a feature that only a couple
of instances have may not be useful because we may run out of the data with
the feature before the classifier learns that the feature is useful. Because of that,
there are a very small number of features that are really useful in our data sets.

Even if the precision is low, if a feature has strong negative correlation, it
is useful in discriminating target instances. Fig. 3 shows the pointwise mutual
information log, (P(q|p)/P(q)) between p meaning that the phrase appears in
the article, and ¢ meaning that the article is the target instance. It shows that few
features have negative mutual information, and they only have small quantity of
information compared with those with positive one. Similar results are expected
when features are nominated by human users. Our binary weighting method
cannot give negative weights to features while the standard learning methods
can, but it is not a significant disadvantage of our method when we use features
nominated by human users because of these properties of such features. When
we allow users to nominate a feature as a negative feature, e.g., a keyword whose
absence suggests that the document is a target instance, we can flip its value,
i.e., we define the feature takes the value 1 when the instance does not have it.

4.1 Experimental Result

We ran our method and six baseline methods on our data set to compare their
performance. We ran each method for two tasks, one for Scandal class and one
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Fig. 3. Pointwise mutual information of features and class (left: Scandal, right: Toyota)

Table 2. Precision@k of AdaFeaSE with different o values

Scandal Toyota
Method («) @100 @500 @1K|@100 @500 @1K
AdaFeaSE (0.05)| .468 .251 .179| .219 .079 .055
AdaFeaSE (0.10)| .448 .275 .180| .213 .073 .056
AdaFeaSE (0.15)| .444 .257 .180| .226 .076 .056

for Toyota class. The six baselines include logistic regression (LR), random forest
(RF), which [11] concluded is the best in the learning-to-enumerate problem, and
Lasso. We also included the combination of PCA (Principal Component Analy-
sis) and these three baseline methods. We first run PCA (cumulative proportion
threshold is 0.8) on the data set with the nominated features to obtain the data
set in the reduced dimension, and run one of the baselines on that data set.

Note that our goal is to quickly find target instances when starting with no
training data set, and the neural network-based methods [6, 18,24, 31], which
require a large training data set, are not effective in our problem setting.

In Algorithm 1, we ask crowds to label a data (Line 5). In this experiment,
we assume that they always return the correct answers, i.e., the ground truth
we created by hiring three or six workers as explained before. We leave an ex-
periment with crowd answers that are not always correct for future work.

AdaFeaSE has a parameter a, which is the level of significance for statistical
test. First, we run AdaFeaSE with three o values: @ = 0.05,0.10,0.15. Table 2
shows Precision@Fk of the three methods for k£ = 100, 500, 1000 for the two tasks.
Presision@k here means that the ratio of the true positives in the k£ data items
chosen by the first & rounds of the while loop in Algorithm 1. Table 2 shows
that these a values do not largely affect the performance of AdaFeaSE. In other
words, AdaFeaSE is very robust and is not sensitive to the parameter a.

Fig. 4 shows the recall of AdaFeaSE and the baselines after each round in
the two tasks (left: Scandal, right: Toyota). Because these methods include ran-
domness (they randomly choose an instance when there are ties), we run each
method five times and take the average of the recall values. For AdaFeaSE, we
chose the best « in each case. Because our goal is to quickly find some number of
target instances, the performance at the early rounds is of our interest. There-
fore, Fig. 4 only shows the early rounds upto the 500th round. These graphs
show that AdaFeaSE outperforms the baselines at those early rounds.
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Fig. 4. Recall of AdaFeaSE and baselines at early rounds (left: Scandal, right: Toyota)

Table 3. Performance of AdaFeaSE and the second best methods (@50, @100, @300)

Class |Round|Recall (AdaFeaSE)| Second Best |Recall (Second)| Diff |Ratio
@50 0.119 Lasso + PCA 0.021 0.098|567%
Scandal | @100 0.178 Lasso + PCA 0.099 0.079|180%
@300 0.398 RF 0.340 0.058|117%
@50 0.172 LR + PCA 0.053 0.119|324%
Toyota |@100 0.273 LR + PCA 0.210 0.063|130%
@300 0.425 LR + PCA 0.309 0.116|138%

Table 3 shows the comparison of AdaFeaSE and the second best methods
in the early rounds. It shows that the difference is significant. AdaFeaSE is
outperformed by some others (not necessarily the second best one in Table 3)
when they are trained enough. However, when we want to quickly find a small
number of target instances, such as 30 instances, AdaFeaSE can find them earlier.

4.2 Analysis on why AdaFeaSE works

In our experiment, AdaFeaSE outperformed the baselines in the earlier rounds.
The next question is why it works. We made the following hypotheses: First, by
inactivating features that are inferior to any others, AdaFeaSE can avoid over-
estimation of useless features at the early rounds. Second, because AdaFeaSE
detects features running out of matching items, and adaptively changes the fea-
tures to use, it works better when the target class is distributed across many
clusters. We conducted experiments for validating these two hypotheses.

To validate the first hypothesis, we measured how over/under-estimation
of the weights change as we proceed through the rounds. We choose logistic
regression for the comparison, and use the Scandal data set. We do not choose
methods with PCA for the comparison because their feature sets are different
from that of AdaFeaSE, and we cannot directly compare over /under-estimation
of the features. We choose logistic regression because it was the method that
retrieved all the target instances at the earliest round, and we use its final weights
as the reference value for defining over/under-estimation as we explain below.

We first define two measures for evaluating the ratio of overestimation and
underestimation. Let W, = (w¢1,...,w;m) be the vector of weights for the
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Fig. 5. (a) Over/under-estimation of weights at each round, (b) Recall by AdaFeaSE
and Lasso at each round for generated data sets with different numbers of clusters.

features f1,..., fm at round t. Let also W = (wq, ..., w,,) be the final weights
output by logistic regression for the features fi,..., f,, after all 6,684 articles
are added to the training set. Because logistic regression could retrieve all the
target instances earlier than AdaFeaSE, we regard the final weights output by
logistic regression as the best available approximation of the ideal weights.

We then normalize the vector W; by dividing the coefficients by > [wy ;. Let
W, = (W1, ..., W ) denote the normalized vector. That is, w; ; = wy ;/ Zj lwy ]
The normalized final weights, w;, are similarly defined by w; = w;/ _; [wj].

We then define the overestimation ratio and underestimation ratio of weights
at the round ¢ as follows:

Over(t) = Z { @il
i1 (0
m Wy, i —Ws
Under(t) = Z {O il

i=1

ﬂ)tﬂ; > ’lf)i) (1)

otherwise)

Wy,; < ’lI}l)

(2)

~ o~ o~ o~

otherwise)

They represent how feature weights at round ¢ deviate from the final weights out-
put by logistic regression. Fig. 5 (a) shows Over(t) and Under(t) for AdaFeaSE
(red line) and logistic regression (blue line). The x-axis is the round ¢ = 1 to
6,684, and y-axis is Over(t)/ Under(t). Values closer to 0 is better. Fig. 5 (a)
shows that AdaFeaSE has lower Over(t) in the early rounds. We believe this is
one of the reasons why AdaFeaSE could find more target instances at the early
rounds. On the other hand, logistic regression has lower Owver(t) at t > 700.
Over(t) of AdaFeaSE largely increases at several ¢ where some useful features
are moved to Frinished, and less useful features are re-activated.

Next, to validate the second hypothesis, we conducted an experiment with
generated data sets consisting of different number of clusters. We generated four
data sets, those with 50, 75, 100, and 125 clusters. Each of them consists of
6,684 documents, among which 252 are target instances. We also assume that
250 phrases are used as the features. These numbers are the same as those of
our Scandal data set. The four data sets are different from each other only in the



12 S. Horikawa et al.

T
AdaFeaSE
Lasso-original
0.8} . Lasso+dummy-once 4
Lasso+dummy-10times
Lasso+dummy-50times
_ 06 R
El o
I3 —
L g
0.4 e R — |
02l y // ]
=
0 L L L L
0 100 200 300 400 500

round

Fig. 6. Recall by pre-trained Lasso simulating initial weight values 1 and AdaFeaSE.

number of features that only target instances have. Each data set includes 50,
75, 100, and 125 phrases that appear only in the target instances, respectively.
We call these features positive features. Because they appear only in the target
instances, precision of these features is 1. They are also disjoint with each other,
i.e., no document includes more than one positive feature. They are also com-
plete, i.e., every target instance has one of the positive features. Therefore, the
recall totally achieved by all the positive features is 1. Because of this assign-
ment of features, each positive feature forms a cluster. Therefore, each data set
includes 50, 75, 100, and 125 clusters, respectively. Because we have 250 features,
each data set has 200, 175, 150, and 125 features that are not positive features,
respectively. Precision of these features are set to 0.04, which is the precision of
features that randomly appear in both target and non-target instances.

Fig. 5 (b) shows the performance of AdaFeaSE and Lasso on these four data
sets. We chose Lasso for this comparison because it was the second best method
at the early rounds for the scandal data set. The performance of Lasso deterio-
rates as the number of clusters increases. On the other hand, the performance
of AdaFeaSE does not largely change when the number of clusters increases.
This result supports our hypothesis that one of the reason of the superiority of
AdaFeaSE is its ability to switch from a cluster to a cluster.

4.3 Lasso with Initial Weight Values Being 1

One difference between AdaFeaSE and the baselines is the initial weight of the
features. In AdaFeaSE, all features are initially active and given weight 1. In the
other methods, the initial weights of features are 0. Because we use features that
are nominated by human workers as prospective, this difference may affect the
performance of AdaFeaSE and the other methods at the very early rounds.

To examine if it is one of the reasons of the difference of the performance,
we conducted another experiment simulating Lasso with the initial weights 1. In
order to simulate it, we pre-train Lasso with 1, 10, or 50 positive samples that
has all the features, and use this pre-trained classifier as the initial classifier.

Fig. 6 shows the result. This result shows that this pre-training improves the
performance of Lasso at the very early rounds, but it is still outperformed by
AdaFeaSE up to around the 240th round.
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Fig. 7. The number of updated rows in S at each round (left: Scandal, right: Toyota).

4.4 Scalability of the Algorithm

As explained before, the time complexity of AdaFeaSE is O(]|F|?|X|) in the worst
case, where O(|F|) rows in the statistics table S are updated in every round.
We measured how many rows were actually updated in our experiments. Fig. 7
shows the numbers of updated rows in each round for Scandal (with |F| = 386)
and Toyota (with |F| = 656) data sets. As shown in these graphs, except for
the very beginning, less than 10 rows are updated. In addition, the comparison
of Scandal case and Toyota case suggests that the numbers of updates do not
increase proportionally to |F|. Therefore, we conclude that AdaFeaSE scales
well with the number of nominated features. In fact, the computation time of
AdaFeaSE is far shorter than the other baseline methods in our experiment.

5 Conclusions

In this paper, we focus on the situations where we want to quickly find some
number (not all) of items of the target class from a fixed data set, but we only
have very noisy feature sets including some useful ones and many useless ones.

Noisy feature sets usually require more training data, and it conflicts with
our goal of quickly finding some data. We proposed a learning method that can
quickly discard useless features. We compare features in a pairwise way based on
their discriminative power, and if a feature is inferior to any other feature with
a statistically significant difference, we temporarily inactivate the inferior one.

Another issue in our problem setting is that the classifier is biased toward
positive instances found earlier. To avoid that, when we run out of remaining
items that have the superior features, we re-evaluate inactivated features. By this
strategy, even when positive instances are distributed across several clusters, our
method can focus on those clusters one by one.

We compared our method with several baselines using two data sets from a
real application and found that our method is superior to them in the perfor-
mance at the early rounds. When we want to quickly find 30 or 50 instances of
the target class, our method can find them earlier than the baselines.

An interesting remaining issue is how to switch from our method, which is
good at early rounds, to other methods, which are good at later rounds. Such a
method would enable us to apply our method to a wider range of applications.
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