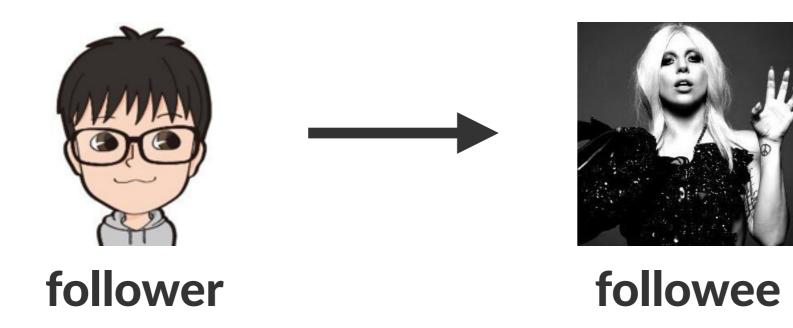
Classification of Twitter Accounts into Targeting Accounts and Non-targeting Accounts

Hikaru Takemura FOLIO, Inc.

Keishi Tajima Kyoto University

Background

- Twitter is still the largest microblogging service which has 310M monthly active users.
- The most distinctive feature of Twitter is the mechanism of follow.



Twitter is used for various purposes.

dissemination of latest news

publication of some messages

communication with friends

announcements to some members

public discussion on specific topics

Twitter is used for various purposes.

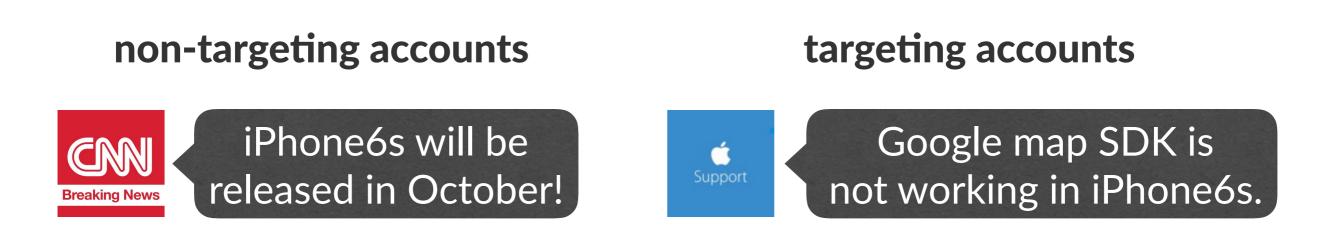
non-targeting accounts (to the general public)

targeting accounts (to specific people)

- The general public depends on the context.
- E.g., a Japanese news account is:
 - a non-targeting account when we assume "the general public" is the set of Twitter users in Japan.
 - a targeting account when we assume "the general public" is the set of all Twitter users in the world.

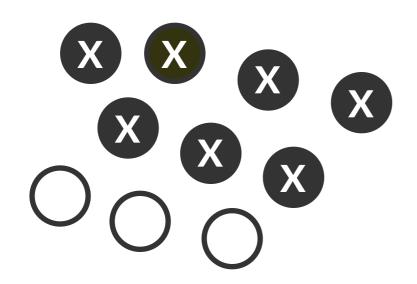
Our Goal

- We propose a method for classifying Twitter accounts into targeting accounts and non-targeting accounts.
- Our method can be useful in **tweet search systems**.
 - e.g., The results of a query "iPhone6s" can be classified into public news and technical information.

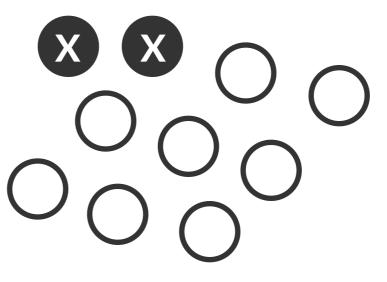


Unusual Consistency

- We measure unusual consistency of a set S.
 S: a set of the followers of an account.
- We find some common properties of the followers, and compute how much a user set with such a consistency deviates from a random sample from the given universe of Twitter users.



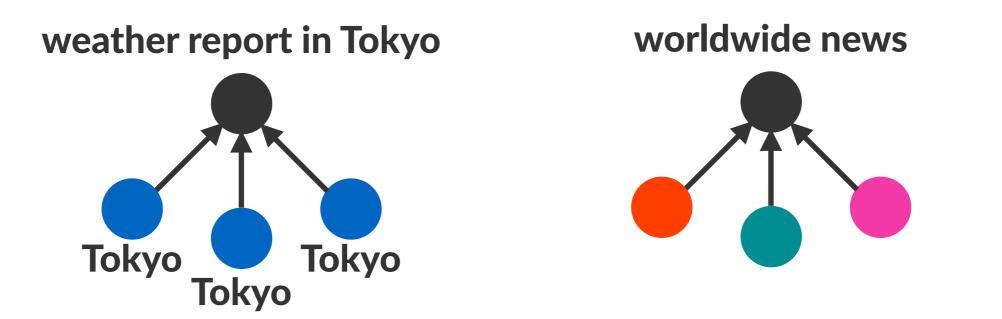
the followers



a random sample from the given universe

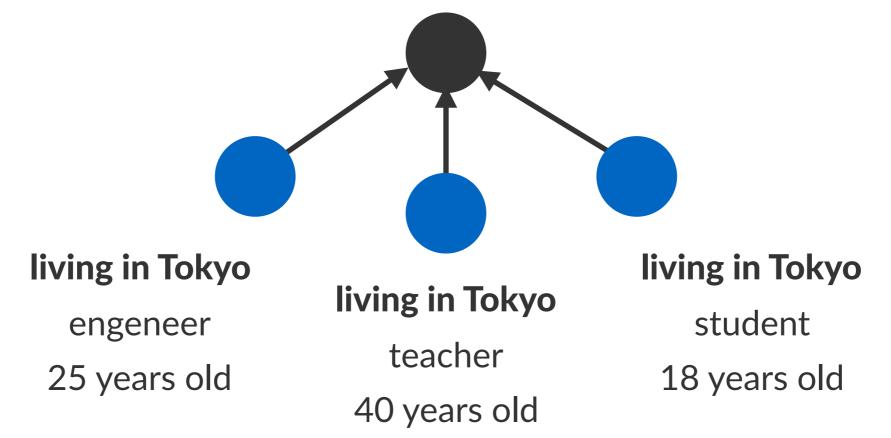
Unusual Consistency

- E.g., an account disseminating weather report in Tokyo
 - The followers have a common property: **living in Tokyo**.
 - Unusual consistency is high.
- E.g., an account disseminating worldwide news
 - The followers have no unusually common properties.
 - Unusual consistency is low.



Unusual Consistency

- High unusual consistency does not imply that the followers are similar to each other in all respects.
 - e.g., most followers of an account disseminating weather report in Tokyo have only one common property (living in Tokyo), but are dissimilar to each other in the other aspects.

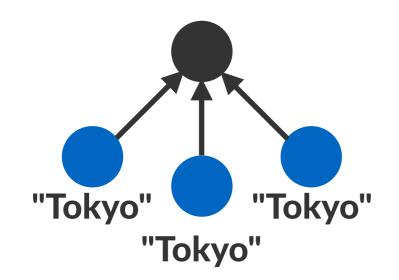


Two Types of Properties

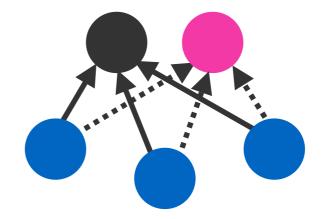
Two types of properties of the followers:
 (1) common terms in their profiles or location information
 (2) their common followees

(1) example of common terms (2) example of common followeers

weather report in Tokyo



a member another member



Two Ways to Measure Consistency Scores

- For each Sx: { e ∈ S | e has the property X }, we measure how unusual it is for S to include the subset that is as consistent as Sx in two ways.
 - Probabilistic Model: based on the probability that a set of the size |S| randomly sampled from the universe includes a subset that is as consistent as Sx.
 - **Difference Model**: using the difference between the cover ratio of **X** in **S** and in the universe.

Classify Accounts by Using Unusual Consistency

- Finally, we classify accounts into targeting acocunts and non-targeting accounts by using ct(S) and cf(S).
 ct(S): unusual consistency of S computed by using common terms
 cf(S): unusual consistency of S computed by using common followees
- We compared the following methods.
 - compare max({ ct(S), cf(S) }) with θ
 - compare $c_t(S) + c_f(S)$ with θ
 - construct a SVM by using the two scores
 - construct a decision tree by using the two scores

Experimental Data Set

- We obtained 1,000 Twitter accounts whose timezone is Japan.
- We hired six Twitter users as assessors, and asked them to annonate whether the account is posting messages to the general public of Twitter users in Japan or not.
- We classified the 1,000 accounts by the majority vote, and selected 90 accounts from each class as the data set.

Experimental Results

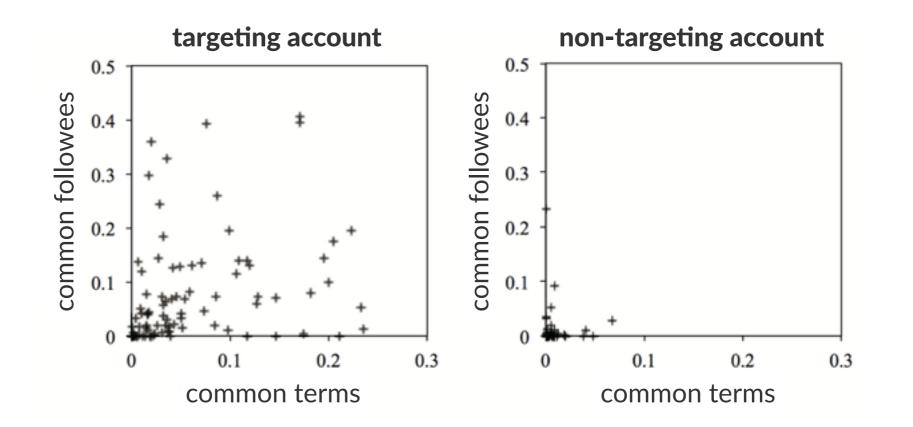
 Accuracy of our method only with either common terms or common followees

	Probablistic Model	Difference Model	
common terms	0.861	0.850	
common followees	0.828	0.833	

- In our method, common terms works better than common followees.
- From now on, we use
 - Probabilistic Model for common terms, and
 - Difference Model for common followees.

Experimental Results

Distribution of two scores of targeting and non-targeting accounts



Two scores of targeting accounts have only weak positive correlation.

Experimental Results

- Accuracy of four methods combining two scores
- Baselines
 - **follower**: compare the number of followers with θ
 - SVM: a binary SVM whose features are the maximum cover ratio of common terms and common followees

Baselines		Proposed Methods			
follower	SVM	max	sum	SVM	decision tree
0.878	0.828	0.856	0.872	0.944	0.906

- The simple follower method achieves high accuracy 0.878.
- Two of our methods achieve even higher accuracy 0.944 and 0.906.

Conclusion

- We proposed a method for classifying Twitter accounts into targeting accounts and non-targeting accounts.
- Our method found common properties of the followers, and calculated how much a user set with such a consistency deviates from a random sample from the given universe of Twitter users.
- Our method using SVM achieved the highest accuracy 0.944.