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Background

‣ Twi/er is s4ll the largest microblogging service which 
has 310M monthly ac4ve users. 

‣ The most dis4nc4ve feature of TwiDer is the mechanism 
of follow.

follower followee



Background

‣ TwiDer is used for various purposes.

communica(on 
with friends

dissemina(on 
of latest news

publica(on 
of some messages

announcements 
to some members

public discussion 
on specific topics



Background

‣ TwiDer is used for various purposes.

communica(on 
with friends

dissemina(on 
of latest news

publica(on 
of some messages

announcements 
to some members

public discussion 
on specific topics

non-targe(ng accounts (to the general public)

targe(ng accounts (to specific people)



Background

‣ The general public depends on the context. 

‣ E.g., a Japanese news account is: 
‣ a non-targe(ng account when we assume "the 

general public" is the set of Twi/er users in Japan. 
‣ a targe(ng account when we assume "the general 

public" is the set of all Twi/er users in the world.



‣ We propose a method for classifying TwiDer accounts 
into targe(ng accounts and non-targe(ng accounts. 

‣ Our method can be useful in tweet search systems.  
‣ e.g., The results of a query "iPhone6s" can be 

classified into public news and technical informa4on.

Our Goal

iPhone6s will be 
released in October! 

Google map SDK is 
not working in iPhone6s.

non-targe(ng accounts targe(ng accounts



Unusual Consistency

‣ We measure unusual consistency of a set S. 
S: a set of the followers of an account. 

‣ We find some common proper4es of the followers, and 
compute how much a user set with such a consistency 
deviates from a random sample from the given universe 
of TwiDer users.

the followers a random sample 
from the given universe
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‣ E.g., an account dissemina4ng weather report in Tokyo 
‣ The followers have a common property: living in Tokyo. 
‣ Unusual consistency is high. 

‣ E.g., an account dissemina4ng worldwide news 
‣ The followers have no unusually common proper4es. 
‣ Unusual consistency is low.

weather report in Tokyo

Tokyo
Tokyo

Tokyo

worldwide news

Unusual Consistency



‣ High unusual consistency does not imply that 
the followers are similar to each other in all respects. 
‣ e.g., most followers of an account dissemina4ng 

weather report in Tokyo have only one common 
property (living in Tokyo), but are dissimilar to each 
other in the other aspects. 

Unusual Consistency
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‣ Two types of proper4es of the followers:  
(1) common terms in their profiles or loca4on informa4on  
(2) their common followees

Two Types of Proper(es

weather report in Tokyo

"Tokyo"
"Tokyo"

"Tokyo"

a member another member

(1) example of common terms (2) example of common followeers



‣ For each Sx: { e ∈ S | e has the property X }, we measure  
how unusual it is for S to include the subset that is as 
consistent as Sx in two ways. 

‣ Probabilis(c Model: based on the probability that a set 
of the size |S| randomly sampled from the universe 
includes a subset that is as consistent as Sx. 

‣ Difference Model: using the difference between the 
cover ra4o of X in S and in the universe.

Two Ways to Measure Consistency Scores



‣ Finally, we classify accounts into targe(ng acocunts and 
non-targe(ng accounts by using ct(S) and cf(S). 
ct(S): unusual consistency of S computed by using common terms 
cf(S): unusual consistency of S computed by using common followees 

‣ We compared the following methods. 
‣ compare max({ ct(S), cf(S) }) with θ 
‣ compare ct(S) + cf(S) with θ 
‣ construct a SVM by using the two scores 
‣ construct a  decision tree by using the two scores  

Classify Accounts by Using Unusual Consistency



‣ We obtained 1,000 TwiDer accounts whose 4mezone is 
Japan. 

‣ We hired six TwiDer users as assessors, and asked them 
to annonate whether the account is pos(ng messages 
to the general public of Twi/er users in Japan or not. 

‣ We classified the 1,000 accounts by the majority vote,  
and selected 90 accounts from each class as the data set.

Experimental Data Set



‣ Accuracy of our method only with either common terms or 
common followees 

‣ In our method, common terms works beDer than common 
followees. 

‣ From now on, we use 
‣ Probabilis4c Model for common terms, and 
‣ Difference Model for common followees.

Experimental Results

Probablis(c Model Difference Model

common terms 0.861 0.850

common followees 0.828 0.833



‣ Distribu4on of two scores of targe4ng and non-targe4ng 
accounts 

‣ Two scores of targe4ng accounts have only weak posi4ve 
correla4on.

Experimental Results
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‣ Accuracy of four methods combining two scores 

‣ Baselines 
‣ follower: compare the number of followers with θ 
‣ SVM: a binary SVM whose features are the maximum cover 

ra4o of common terms and common followees 

‣ The simple follower method achieves high accuracy 0.878. 
‣ Two of our methods achieve even higher accuracy 0.944 and 

0.906.

Experimental Results

Baselines Proposed Methods

follower SVM max sum SVM decision 
tree

0.878 0.828 0.856 0.872 0.944 0.906



‣ We proposed a method for classifying TwiDer accounts 
into targe(ng accounts and non-targe(ng accounts. 

‣ Our method found common proper4es of the followers, 
and calculated how much a user set with such a 
consistency deviates from a random sample from the 
given universe of TwiDer users. 

‣ Our method using SVM achieved the highest accuracy 
0.944.

Conclusion


