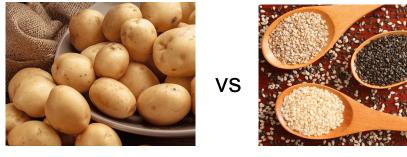
ACM Multimedia Asia 2024

Adaptive Feature Inheritance and Thresholding for Ingredient Recognition in Multimedia Cooking Instructions

Yixin Zhang¹, Yoko Yamakata² and Keishi Tajima¹ ¹Kyoto University, ²The University of Tokyo

Research Background

- Recipe as Multimedia Instructions
 - Typical multimedia instructional data
 - Have much content on the Internet.
 - Step-by-step instruction format
 - Rich information for multi-modal analysis.


Challenges and Problems

- Recognition difficulty
 - The appearance of ingredients are changing during cooking process

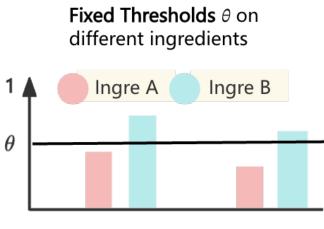
Challenges and Problems

- Recognition confidence varies by recipe context
 - Some ingredients are harder to recognize
 - Main ingredients: Easy to recognize
 - Clear visual features
 - Abundant training data
 - Seasonings: Hard to recognize
 - Subtle visual presence
 - Limited training examples
 - The same ingredient might be more visible in one recipe than in another

Easy

Hard

Potatoes in different recipes


Limitations of Traditional Methods

• Existed Multi-label Recognition Method are limited

- Mainly focus on appearance-static objects
- Mainly look at the final dish image, or analyze text information
- Can not handle appearance changing of ingredients during cooking

• Fixed Threshold Issues

- Standard threshold (e.g., 0.4) too high
- Misses subtle ingredients
- Can not handle variety in recipes

Cannot detect Ingre A

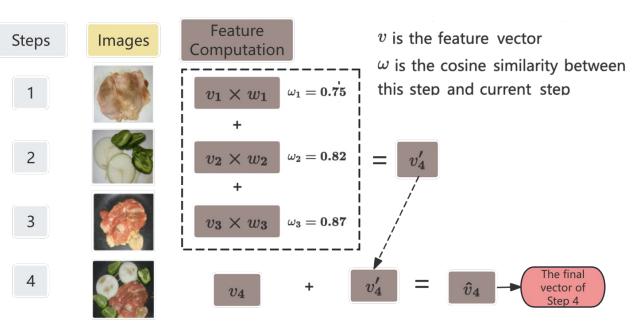
Key Observations


- Recognition Patterns
 - Higher confidence in early steps
 - Decreasing confidence over time
 - Since appearance of ingredient are changing

きたら彩り野菜を入れ黒胡椒 用しました。

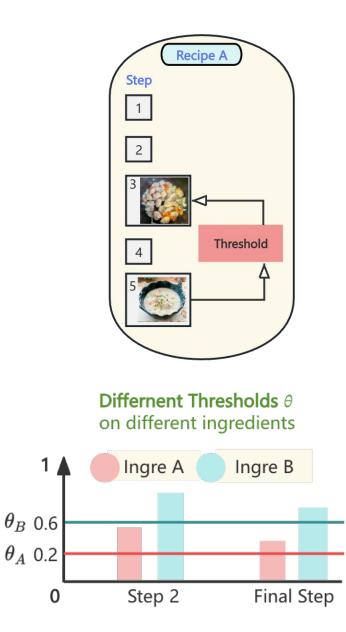
で味を整えます。

- Ingredient Inheritance
 - Ingredients flow between steps
 - Context helps recognition


Key Observations

- Natural predefined label candidate set
 - Since each recipe has its own ingredient list
 - Much smaller than full dataset labels
 - Smaller recognition space

Our Approach


- Contextual Feature Inheritance
 - Why Learn from Previous Steps?
 - Ingredients change appearance
 - Earlier steps: clearer visual features
 - Maintain inheritance relationships
 - Feature Computation
 - Weight based on step similarity
 - Adaptive feature inheritance
 - Enhance recognition with context

Our Approach

- Adaptive Thresholding
 - Final step contains all ingredients
 →Ingredient Estimation at the Final Step.
 → Recipe-specific thresholds

- Recognition difficulty varies by recipe
- Each ingredient needs different threshold
 →Handle varied recognition difficulty

Performance Results

• Comparison with Baselines

Method	Data	Precision	Recall	F1
Baseline	Image-only	0.4653	0.5536	0.5056
D-Mixup	ImageText	0.5455	0.5714	0.5581
Curriculum Learning	ImageText	0.5781	0.6305	0.6031
Ours	Image-Text +Context	0.6293	0.7384	0.6792

- Data Types:
 - image-only: Using only image data
 - ImgTxt: Using both image and text data
 - ImgTxt-C: Using image, text, and contextual information

Performance Results

Ablation Studies

Method	Precision	Recall	F1
CLIP	0.5970	0.7219	0.6535
CLIP + Context (Ours)	0.6293	0.7384	0.6792

Inheritance + context architecture provides the best performance

Threshold Type	Precision	Recall	F1
Fixed (0.15)	0.5501	0.5871	0.5679
Fixed (0.25)	0.5122	0.5315	0.5216
Adaptive	0.6293	0.7384	0.6792

- Fixed thresholds struggle with varying ingredient visibility
- Our adaptive approach significantly improves recognition accuracy

Conclusion

- An ingredient recognition approach for cooking processes
- Feature inheritance mechanism for handling parallel tasks
- Adaptive thresholding for ingredient-specific recognition
- Large-scale multimedia recipe dataset
- Cooking Domain Applications
 - Smart kitchen assistance
 - Dietary tracking systems
 - Cooking education platforms

- Beyond Cooking
 - Movie actor detecting
 - Manufacturing process monitoring
 - Chemical reaction tracking

Thanks for listening!