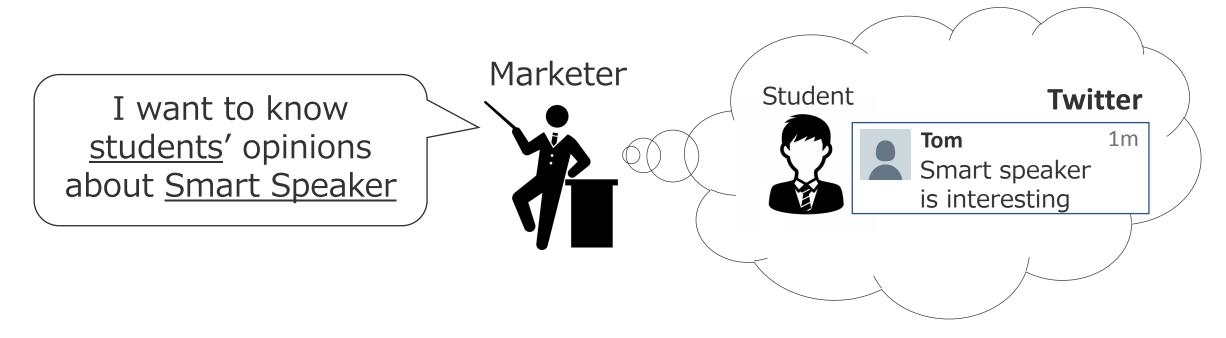
SNS Retrieval Based On User Profile Estimation Using Transfer Learning From Web Search

Daisuke Kataoka and Keishi Tajima Kyoto University, Japan

Background

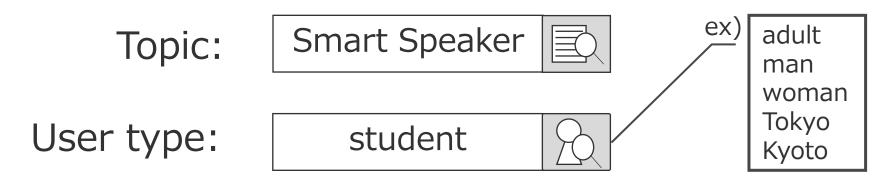
Twitter is useful for opinion mining Ex) Target marketing of new products



To know the opinions from students, the marketer search <u>Twitter</u> with Smart Speaker student Q

Tweet Retrieval specifying topics and user types

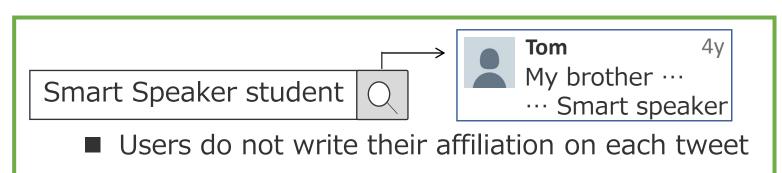
Ex) posts about Smart Speaker posted by students



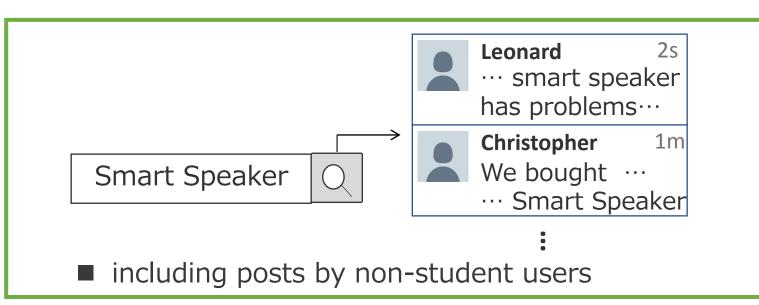
> In this way, search by these two conditions

Problems on Twitter search

- > However, a user type <u>do not appear</u> in tweet itself
- (1) search with topic and user types \rightarrow low recall



(2) only topic keywords \rightarrow low precision



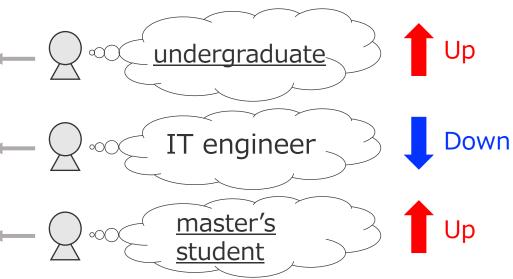
Proposal

- We propose Re-Ranking method integrated with user profile estimation
- Search by Topic query

Smart Speaker

Re-rank based on Profile query

student

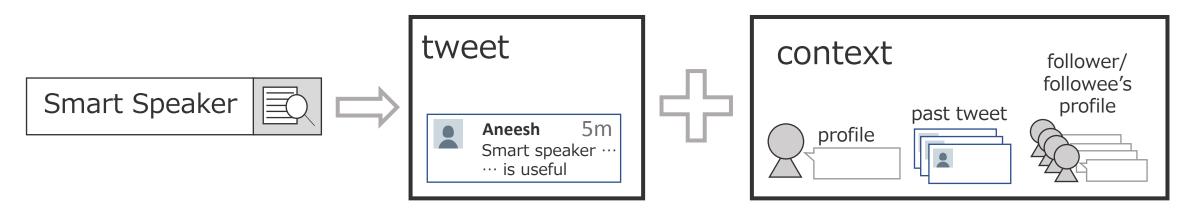


Approach

Regard user profile estimation as a classification problem

- Estimate a likelihood of having the target user profile
- Give higher ranks to the tweets with higher likelihood

Judge from the tweets and their context +

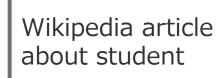


† D. Kataoka et al., Context-aware Relevance Feedback over SNS Graph Data, WI 2017

Hypothesis 1 on user profile estimation

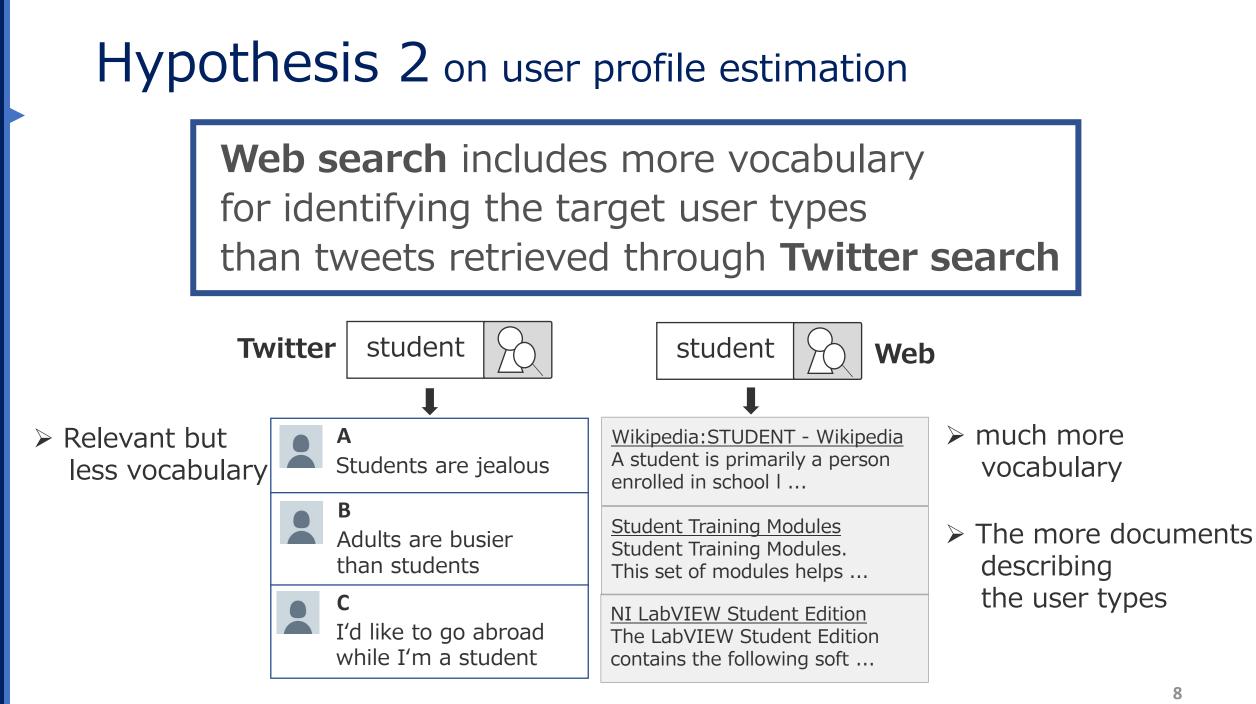
Search Engine is useful for obtaining vocabulary about user profiles

 ➤ Search engine returns documents relevant to query
 → By retrieving by <u>a keyword representing the type of users</u>, documents describing the target user type are obtained

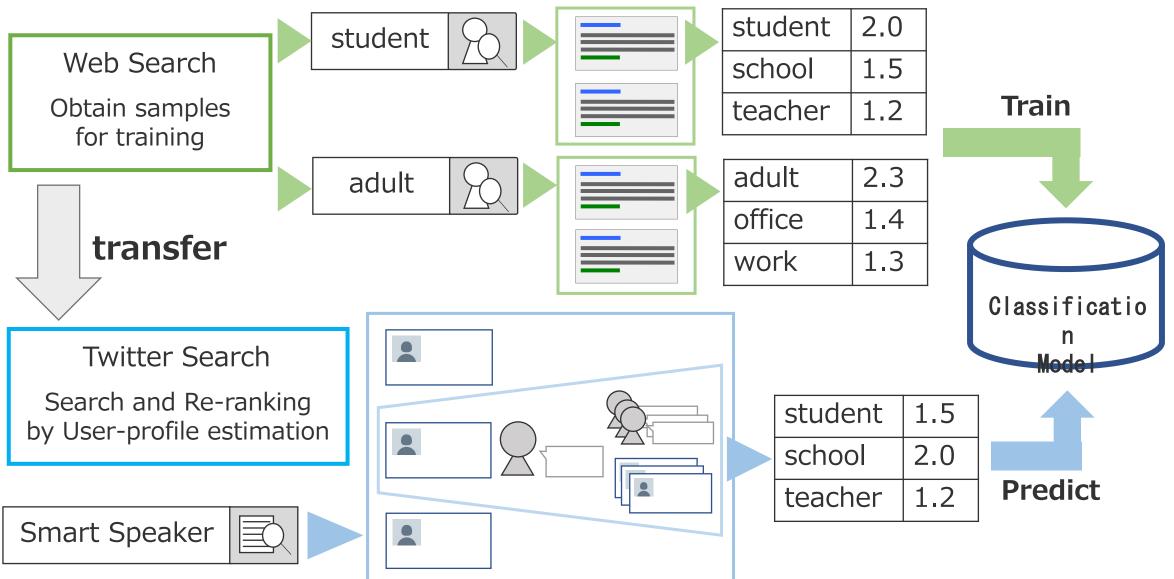


Job hunting site for student

Article on accidents caused by student

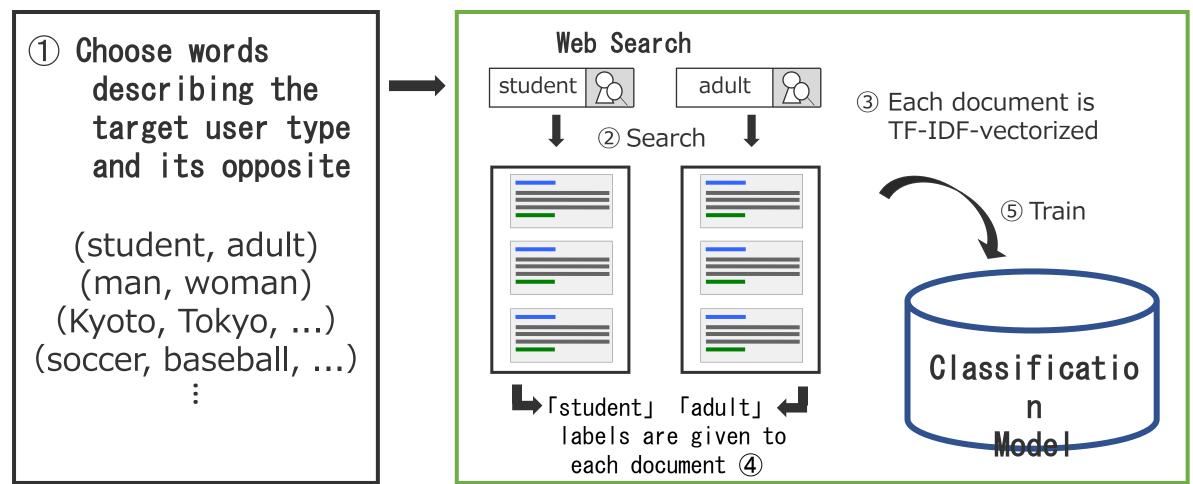


Transfer Learning



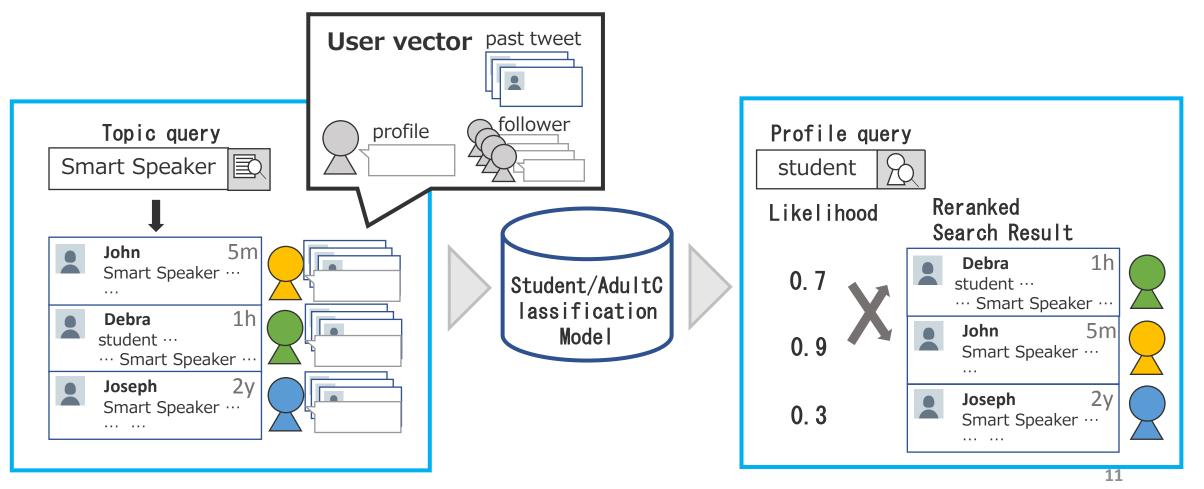
Training phase

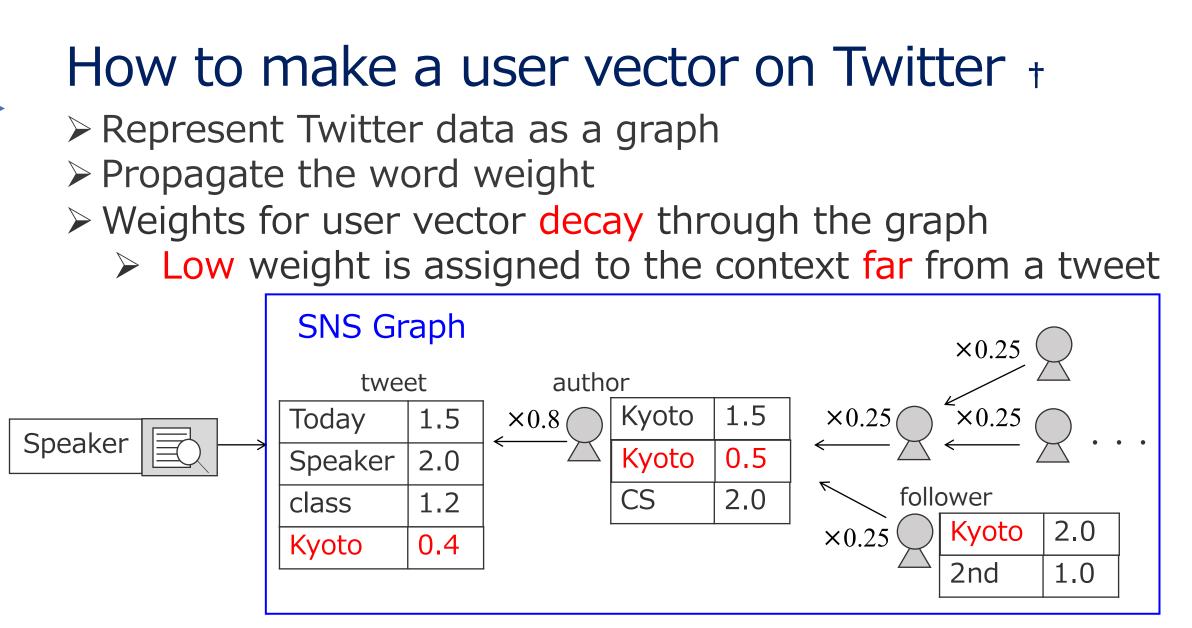
Collect positive and negative samples as datasets and train a classification model



Applying phase

- > Apply the trained model on Tweet Retrieval
 - Input each user vector and obtain prediction score
 - Rank tweets by the likelihood of the target user type





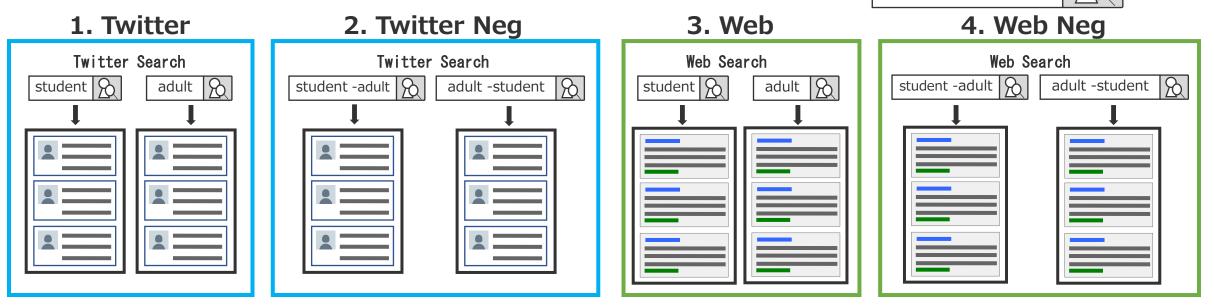
The weight of [Kyoto] is computed as $2.0 \times 0.25 \times 0.8 = 0.4$ † D. Kataoka et al., Context-aware Relevance Feedback over SNS Graph Data, WI 2017

Experiments

Comparison with four methods

- 1. Twitter (Baseline 1) 3. Web (Proposed method)
- 2. Twitter Neg (Baseline 2) 4. Web Neg (Proposed method)

* In Neg method, negation operator is used on Web search Ex) student -adult



The search results would **not** contain the documents about the opposite user type
13

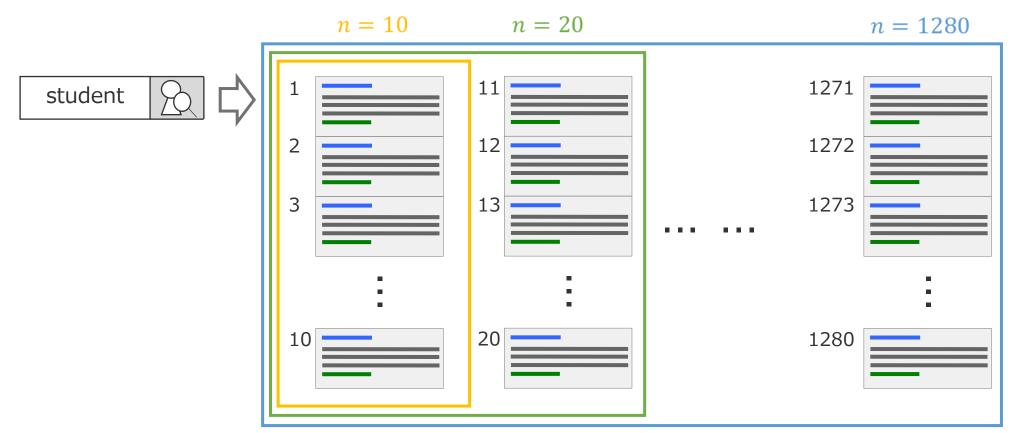
Experiments

Random Forest classification model is used for training

> Top *n* Web/Twitter search results are used for training models

 \succ examine the difference when changing the size of datasets

 \triangleright n = 10, 20, 40, 80, 160, 320, 640, 1280



Experiments

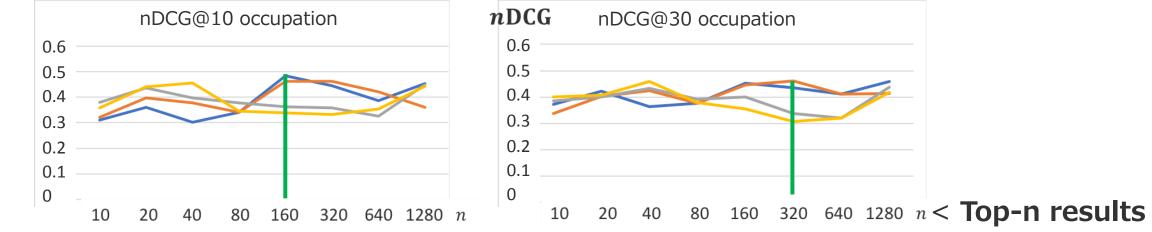
> Queries: 5 (topic query) * 6 (profile query) = 30 queries

	Topic Query	Profile Query	Category	Intention
1	Smart Speaker	student	Occupation	posts about Smart Speaker by students
2	Osaka Castle	Osaka	Region	posts about Osaka Castle by the persons from Osaka
3	Star Wars	man	Gender	posts about Star Wars by men

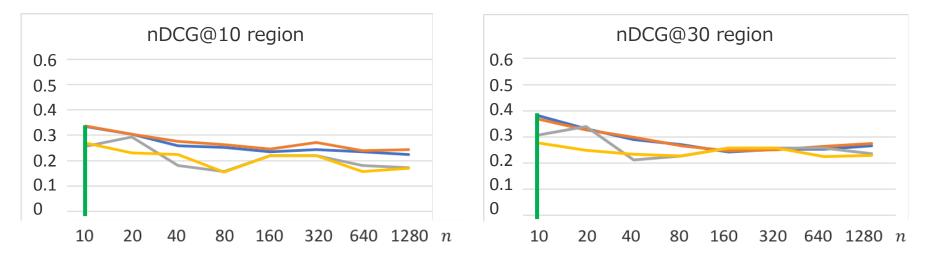
Experimental Results

— : Twitter — : Twitter Neg — : Web Neg

> In the occupation, Web Neg method showed highest nDCG@10,30



> In the region, Web Neg method showed highest nDCG@10,30

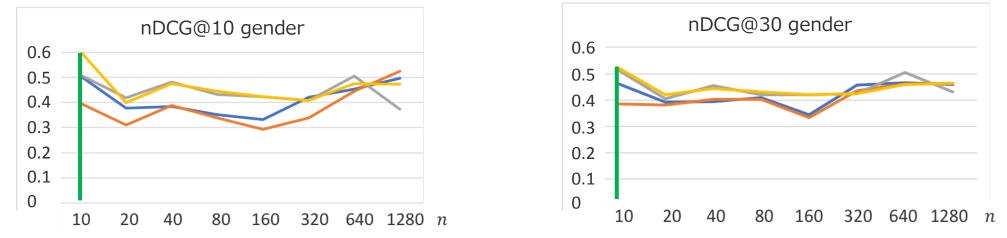


16

Experimental Results

— : Twitter — : Twitter Neg — : Web Neg

> In the gender, Twitter Neg method showed highest nDCG@10,30

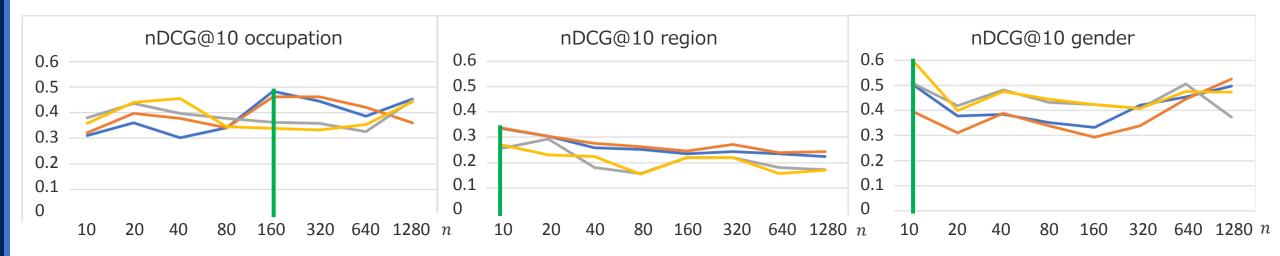


> In the three categories,

- the best methods are different
- the best n of top-n results is different

Discussions about n

— : Twitter — : Twitter Neg — : Web — : Web Neg



- > The best n is different
- > A bigger *n* does **not necessarily** produce a higher nDCG
- $\leftarrow \text{because search quality becomes lower at low rank}$
- \rightarrow Not all documents are useful for training

Discussions about effective features

Examine the effective features of the Random Forest based on the feature importance calculated by "gini importance" +

Rank	Twitter 320	score	Twitter Neg 320	score	Web 320	score	Web Neg 320	score
1	do	0.952	given	0.418	society	0.538	society	0.589
2	behind	0.0281	(0.2196	student	0.00918	student	0.0557
3	woman	0.0056	like	0.146	reserved	0.0388	©□	0.0539
4	3	0.00429		0.0268	СП	0.0287	reserved	0.0412
5)	0.00244	center	0.023	copylight	0.0273	copylight	0.0327
6	exists	0.00147	3	0.0171	person	0.0127	person	0.0113
7	person	0.00146	/	0.0882	work	0.00833	public	0.00907
8		0.00123	person	0.00455	include	0.00739	woman	0.00707
9	become	0.00123	do	0.0045	age	0.00614	drink	0.00596
10	/	0.000742	Dazai	0.0043	public	0.00545	all	0.00502

Occupation Models

> There are more effective features on Web and Web Neg

+ Breiman, Friedman, "Classification and regression trees", 1984.

Summary & Future works

Summary

- We proposed a new tweet ranking method using transfer learning from Web domain
- Our proposed method achieved higher nDCG in the occupation and region categories, but low in the gender category

Future works

- determines *n* of the top-*n* results automatically and dynamically
- adopt domain adaptation approaches