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What Is Active Learning

• Problem in supervised machine learning:
• Unlabeled data is abundant, while annotation cost is high

• What if a model can ask its ”supervisor” for labels?
• Actively choose data for labeling to learn
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Pool-Based Active Learning

• 3 main types of Active Learning:
• Membership Query Synthesis

• Pool-Based Samplling

• Stream-Based Selective Sampling
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What If Specific Data Domain Is Given

• Given a fixed pool of text data, is there any approach which the 
learner can take advantage of?
• Fixed pool: pool-based Active Learning

• Text data: language model features
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Standard Active Learning

• Improve the model’s accuracy with as few human annotation as 
possible
• Desired output: trained model
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Learn-to-Enumerate

• Extract a certain class of data from the unlabeled data pool with as 
few human annotation as possible
• Desired output: all data of a specific class
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Standard Active Learning

• Uncertainty Sampling
• label those items for which the current model is least certain as to what 

the ground truth should be

• In SVM, it is tantamount to search for the support 

vectors ASAP
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Learn-to-Enumerate

• ε-greedy exploitation and exploration
• With probability ε, do exploration, i.e., the current model is least confident

• With probability 1 - ε, do exploitation, i.e., the current model is most 
confident

• Exploitation-only strategy gives the best result 
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P. Jörger, Y. Baba, and H. Kashima, “Learning to enumerate,” in Proc. of Intl. Conf. on Artificial Neural 
Networks, Part I, 2016, pp. 453–460. 
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Query Strategy Design of Text Data
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• Manage the unlabeled data in an certain order to achieve our goal

• Deside the definition of informativeness (primitive methods)
• Unique word count

• Sum of TF-IDF

• Sum of TF-IDF of unseen words

• Norm of Doc2Vec

• Combine our primitive methods with a baseline method in each 
problem setting



Unique Word Count

• Count unique words in each document
• Long articles with many different words are difficult to understand

• If the document has many non-repetitive words, the document is informative
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Sum of TF-IDF

• Term frequency–inverse document frequency

• Term frequency: tf 𝑡, 𝑑 =
𝑓𝑡,𝑑

σ
𝑡′∈𝑑

𝑓𝑡′,𝑑

• Inverse document frequency: idf t, D = log
𝑁

|{𝑑 ∈ 𝐷∶ 𝑡 ∈ 𝑑}|

• TF-IDF: tfidf 𝑡, 𝑑, 𝐷 = tf(𝑡, 𝑑) ∙ idf(𝑡, 𝐷)

• Sum up TF-IDF scores of all words in a document

• However, this calculation is too much affected by very unusual words 
(very large IDF)
• Only use top-k TF-IDF scores
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Sum of TF-IDF of Unseen Words

• If some words are already learnt, it is not necessary to learn these 
words repetitively

• Only calculate TF-IDF scores of unprecedented words 
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Norm of Embedding Vector (Word2Vec)

• When TF is less than a certain threshold, norm of word embedding 
increases as TF rises
• The word vector is updated frequently during training

• When TF rises further, the norm will decrease
• The word vector is updated so frequently that is stretched flat

• Extremely frequent words fit many context

• Extend this attribute to document, using

Doc2Vec 
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Combined with Uncertainty Sampling

• In uncertainty sampling, instead of calculate the most uncertain item, 
we make it yield top-k candidates

• Apply primitive approaches on these candidates
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Combined with Exploitation-Only

• In exploitation-only ε-greedy strategy, instead of calculate the most 
confident item, we make it yield top-k candidates

• Apply primitive approaches on these candidates
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Experiment Detail

• When selecting top-k words having the highest TF-IDF values in our 
method, we selected 20 words

• In the combination methods, we first choose top 10 candidates

• Learner model, Support Vector Machine (SVM) with default hyper-
parameters in SciKit-Learn
• Computational cost

• Small dataset size

• Baseline
• Standard Active Learning: uncertainty sample

• Learn-to-Enumerate: exploitation-only ε-greedy strategy
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Description of Dataset 1

• SMS Spam Collection Dataset
• UCI Machine Learning Repository

• Spam: 50%, ham: 50%

• Learn-to-enumerate target: spam 
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Results on Dataset 1: Primitive Methods

• Primitive methods showed worse 
result than baseline
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Results on Dataset 1: Combined Methods

• Our methods consistantly 
outperformed baseline
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Results on Dataset 1: Learn-to-Enumerate

• Our methods consistantly 
outperformed baseline
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Description of Dataset 2

• Binary sentiment classification of movie reviews 
• Large Movie Review Dataset v1.0 

• Positive: 20%, negative: 80%

• Learn-to-enumerate target: positive 
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Results on Dataset 2: Primitive Methods

• Primitive methods showed worse 
result than baseline
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Results on Dataset 2: Primitive Methods

• Our methods gave higher score on 
the opposite class
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Results on Dataset 2: Combined Methods

• Doc2Vec combination method 
outperformed baseline by a 
narrow but consistent margin
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Results on Dataset 2: Learn-to-Enumerate

• Our methods performed equally 
as baseline due to property of 
the dataset
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Conclusion

• We proposed methods that utilize features specific to text data 
• Unique word count

• Sum of TF-IDF

• Sum of TF-IDF of unseen words

• Norm of Doc2Vec

• Combination methods
• Combine with uncertainty sampling to solve standard active learning problem

• Combine with exploitation-only ε-greedy strategy to solve learn-to-enumerate 
problem
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Standard Active Learning

• Our primitive did not always outperform uncertainty sampling

• Our combination methods outperformed it with a small but 
consistent margin 
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Learn-to-Enumerate
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• Our methods outperformed the exploitation-only strategy in the 
experiment with Dataset 1
• Our methods have advantage due to data property

• Our methods yielded equal result as exploitation-only strategy in the 
experiment with Dataset 2
• Our methods have disadvantage due to data property

• Our methods generally have superiority over exploitation-only 
strategy
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